Optimization of wafer orientation and electrode materials for LGS high-temperature SAW sensors

Author(s):  
S. Sakharov ◽  
A. Zabelin ◽  
S. Kondratiev ◽  
D. Richter ◽  
H. Fritze ◽  
...  
2000 ◽  
Vol 5 (S1) ◽  
pp. 369-375 ◽  
Author(s):  
Seikoh Yoshida ◽  
Joe Suzuki

High-quality GaN was grown using gas-source molecular-beam epitaxy (GSMBE). The mobility of undoped GaN was 350 cm2/Vsec and the carrier concentration was 6×1016 cm−3 at room temperature. A GaN metal semiconductor field-effect transistor (MESFET) and an n-p-n GaN bipolar junction transistor (BJT) were fabricated for high-temperature operation. The high-temperature reliability of the GaN MESFET was also investigated. That is, the lifetime of the FET at 673 K was examined by continuous current injection at 673 K. We confirmed that the FET performance did not change at 673 K for over 1010 h. The aging performance of the BJT at 573 K was examined during continuous current injection at 573 K for over 850 h. The BJT performance did not change at 573 K. The current gain was about 10. No degradation of the metal-semiconductor interface was observed by secondary ion-mass spectrometry (SIMS) and transmission electron microscopy (TEM). It was also confirmed by using Si-ion implantation that the contact resistivity of the GaN surface and electrode materials could be lowered to 7×10−6 ohmcm2.


2018 ◽  
Vol 258 ◽  
pp. 1-10 ◽  
Author(s):  
S.Ya. Istomin ◽  
A.V. Morozov ◽  
M.M. Abdullayev ◽  
M. Batuk ◽  
J. Hadermann ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 609
Author(s):  
Xing-Qun Liao ◽  
Feng Li ◽  
Chang-Ming Zhang ◽  
Zhou-Lan Yin ◽  
Guo-Cong Liu ◽  
...  

In recent years, various attempts have been made to meet the increasing demand for high energy density of lithium-ion batteries (LIBs). The increase in voltage can improve the capacity and the voltage platform performance of the electrode materials. However, as the charging voltage increases, the stabilization of the interface between the cathode material and the electrolyte will decrease, causing side reactions on both sides during the charge–discharge cycling, which seriously affects the high-temperature storage and the cycle performance of LIBs. In this study, a sulfate additive, dihydro-1,3,2-dioxathiolo[1,3,2]dioxathiole 2,2,5,5-tetraoxide (DDDT), was used as an efficient multifunctional electrolyte additive for high-voltage lithium cobalt oxide (LiCoO2). Nanoscale protective layers were formed on the surfaces of both the cathode and the anode electrodes by the electrochemical redox reactions, which greatly decreased the side reactions and improved the voltage stability of the electrodes. By adding 2% (wt.%) DDDT into the electrolyte, LiCoO2 exhibited improved Li-storage performance at the relatively high temperature of 60 °C, controlled swelling behavior (less than 10% for 7 days), and excellent cycling performance (capacity retention rate of 76.4% at elevated temperature even after 150 cycles).


2012 ◽  
Vol 476-478 ◽  
pp. 1802-1805 ◽  
Author(s):  
Xiao Guo Cao ◽  
Hai Yan Zhang

Hydrogen generation through high temperature solid oxide electrolysis cells (SOEC) has recently received increasingly international interest in the large-scale, highly efficient nuclear hydrogen production field. To achieve cost competitive electrolysis cells that are both high performing i.e. minimum internal resistance of the cell, and long-term stable, it is critical to develop electrode materials that are optimal for steam electrolysis. In this paper, the cathode materials of SOEC are reviewed. Ni-YSZ and Ni-SDC/GDC cermets are promising cathode materials for SOEC working at high temperature. The solid oxide matierials are promising cathode materials for SOEC working in atmospheres with low content of H2,e.g. in smaller scale generators used intermittently without H2 purging. More works, both experimental and theoretical, are needed to further develop SOEC cathode materials.


2008 ◽  
Vol 01 (02) ◽  
pp. 105-113 ◽  
Author(s):  
ILAN RIESS

Significant advantage could be achieved if mixed reactant fuel cells, MR-FC, were functioning. These cells are intended to operate on a mixture of air and fuel introduced into both the cathode and anode compartment. Symmetry is broken by using different electrode materials exhibiting special and different catalytic properties. No high temperature fuel cell was reported to date to function as a true MR-FC and only one, low temperature type, did function properly. We discuss the required catalytic properties which are unique in that they promote electrochemical reactions and suppress chemical ones as well as possible ways to search for them. The chemical reaction which has to be suppressed is the direct reaction of fuel and oxygen as the two components are premixed and the mixture is then introduced into the fuel cell at both electrode compartments. The electrochemical reactions that should be promoted are the reduction of oxygen at the cathode and the oxidation of fuel at the anode only by oxygen ions that emerge from the solid electrolyte. Conditions to promote this selectivity are discussed. These are derived from the theory of chemisorption as applied to heterogeneous catalysis.


Sign in / Sign up

Export Citation Format

Share Document