Measurements of sliding friction forces under ultrasonic oscillations: Out-of-plane oscillations

Author(s):  
Soohyun Kim ◽  
Youngjae Min ◽  
Young H. Kim
2019 ◽  
Vol 126 ◽  
pp. 00038
Author(s):  
Vladimir Konovalov ◽  
Sergey Konovalov ◽  
Victoria Igumnova

The article shows importance of use of dump plowing for formation and maintenance of soil structure and pest control and diseases of cultivated plants. A significant drawback of plowing process is indicated, which is its high energy intensity. To reduce energy consumption, it is proposed to use rotating field boards, which allow replacing sliding friction forces with rolling friction forces. The article presents a description of design of plow’s body with rotating field board and notes that without a preliminary analytical study and justification of initial parameters, their use may not be effective. Analytical relations connecting value of radius of rotating field of board, rate of collapse of soil, allowable value of indentation of field board into soil and specific force of cutting resistance of soil that ability to use it for baseline technical parameters. To analyze obtained dependence, the article presents its graphical solution. The authors obtained an expression for determining the value of arm’s force of reference reaction from soil to balance a plow’s body, in addition, this indicator can be used to adjust a body when working on soils with different physical and mechanical parameters and at different depths.


1993 ◽  
Vol 115 (3) ◽  
pp. 575-577 ◽  
Author(s):  
Lee E. Schroeder ◽  
Rajendra Singh

This paper describes an experimental method of determining sliding friction forces in a pneumatic actuator. Several empirical and semi-empirical friction models are evaluated using measured friction force data. A repeatability study is also performed to qualitatively assess friction randomness and a change in friction regimes.


Author(s):  
Pooya Ghaderi ◽  
Andrew J. Dick

In this study, a two-component auto-parametric resonator utilizing piezoelectric actuation is proposed. The resonator consists of a plate component which serves as the exciter and a beam component which serves as the oscillator. When an electric signal is applied, the plate component experiences in-plane oscillations which serve to provide axial excitation to the beam component. The system is designed to operate in auto-parametric resonance with a plate to beam principal frequency ratio of 1:2. Due to the oscillations of the beam component, a dynamic force and a moment are applied to the plate and can cause out-of-plane oscillations of the plate component. Internal-resonance can also exist between the beam oscillations and the out-of-plane vibrations of the plate component. A model is derived in order to describe these three motions and the coupling between them. By assuming single mode behavior for each motion, the model is discretized and represented with a three degree-of-freedom model. The model is solved analytically by using the method of multiple scales. Results of the perturbation method agree well with the numerical simulation. The results for the system with strong and weak coupling between the resonator components are presented and compared.


Author(s):  
Natal'ya Scherbina ◽  
Evgeniya Sergacheva

The influence of the angle of inclination of the plane along which the sliding and rolling of rubber washers with different weights is carried out on the theoretical and practical length of movements of these objects is considered


Author(s):  
R. Marumo

This paper considers the investigations into adhesion, contact mechanics metal erosion effects, wear and tare as a result of the effects of frictional forces. Mechanical components rely on friction for the transformation and delivery of energy from point A to point B. This requires the knowledge of combined energies as well as their associated dynamic models and ancillary parameters. Adhesion, contact, friction and wear are major problems limiting both the fabrication yield and lifetime of any devices. Since it is the area of real contact, which determines the sliding friction, adhesion interaction may strongly affect the friction force even when no adhesion can be detected in a pull-off experiment. Therefore a good scientific dynamic modelling of friction forces is a prerequisite for the understanding and monitoring of friction adverse effect on mechanical systems for good maintenance purposes.


Sign in / Sign up

Export Citation Format

Share Document