Multi Input Single Output using Operational Transresistance Amplifier as First Order Filter

Author(s):  
Khushi Banerjee ◽  
Prasit Kumar Bnadopadhyaya ◽  
Bishal Sarkar ◽  
Arindam Biswas
2019 ◽  
Vol 28 (13) ◽  
pp. 1950219 ◽  
Author(s):  
D. Agrawal ◽  
S. Maheshwari

This paper presents an electronically tunable current-mode first-order universal filter. The proposed circuit employs only a single Extra-X Current-Controlled Conveyor (EX-CCCII) and a single grounded capacitor, which is suitable for IC implementation. The circuit can realize three current transfer functions simultaneously, namely low-pass, high-pass and all-pass. The proposed circuit exhibits low-input and high-output impedance, which is suitable for cascading. The pole frequency of the filter can be electronically tuned, by varying the bias current of EX-CCCII. The nonidealities and parasitic effects on the circuit performance are investigated in detail. Also, the Monte Carlo analysis is done to show the effect of active and passive element mismatches on the pole frequency. An eight-phase current-mode sinusoidal oscillator and current-mode second-order filter are further realized using the proposed circuit. The functionality of the proposed circuits is verified through PSPICE simulations, using 0.25-[Formula: see text]m TSMC CMOS technology parameters.


Machines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 10 ◽  
Author(s):  
Alessandro Palmieri ◽  
Renato Procopio ◽  
Andrea Bonfiglio ◽  
Massimo Brignone ◽  
Marco Invernizzi ◽  
...  

Model-based control techniques have been gaining more and more interest these days. These complex control systems are mostly based on theories, such as feedback linearization, model predictive control, adaptive and robust control. In this paper the latter approach is investigated, in particular, sliding mode (SM) control is analyzed. While several works on the description and application of SM control on single-input single-output systems can easily be found, its application on multi-input multi-output systems is not examined in depth at the same level. Hence, this work aims at formalizing some theoretical complements about the necessary conditions for the feasibility of the SM control for multi-input-multi-output systems. Furthermore, in order to obtain the desired performance from the control system, a method for parameter tuning is proposed in the particular case in which the relative degree of the controlled channels is equal to one. Finally, a simple control problem example is shown with the aim of stressing the benefits derived from the application of the theoretical complements described here.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 1967-1973 ◽  
Author(s):  
Wei Ma ◽  
Rui Zhang ◽  
Lei Wang ◽  
Jiahong Li ◽  
Zhiming Dong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document