Online Parameter Identification for Lithium-Ion Cell in Battery Management System

Author(s):  
Tiansi Wang ◽  
Lei Pei ◽  
Rengui Lu ◽  
Chunbo Zhu ◽  
Guoliang Wu
2021 ◽  
Vol 8 (1) ◽  
pp. 9-15
Author(s):  
Khaeruddin Khaeruddin ◽  
Wijono Wijono ◽  
Rini Nur Hasanah

Makalah ini membahas tentang penyeimbangan arus charging baterai lithium-ion pada BMS (Battery Management System) mobil listrik. Kondisi tidak seimbang pada saat proses pengisian baterai disebabkan karena salah satu baterai yang sudah terisi penuh sedangkan sebagiannya masih separuh atau bahkan hanya seperampat saja yang terisi. Kondisi ini dapat menyebabkan baterai cepat panas, serta melewati kondisi SOA (Safety of Area) sehingga menyebabkan kebakaran pada baterai. Pada penelitian ini, teknik cell-to-cell diusulkan untuk menyeimbangkan arus pengisian ke masing-masing sel baterai agar mendekati kondisi sama rata. Hasil simulasi menunjukan bahwa penggunaan teknik balancing cell-to-cell dapat menyeimbangkan sel baterai selama masa pengisian.  Kata kunci: Penyeimbangan, Sel, Baterai, Lithium-ion, Cell-to-cell, BMS.


Author(s):  
L. Rimon ◽  
Khairul Safuan Muhammad ◽  
S.I. Sulaiman ◽  
AM Omar

<span>Robustness of a battery management system (BMS) is a crucial issue especially in critical application such as medical or military. Failure of BMS will lead to more serious safety issues such as overheating, overcharging, over discharging, cell unbalance or even fire and explosion. BMS consists of plenty sensitive electronic components and connected directly to battery cell terminal. Consequently, BMS exposed to high voltage potential across the BMS terminal if a faulty cell occurs in a pack of Li-ion battery. Thus, many protection techniques have been proposed since last three decades to protect the BMS from fault such as open cell voltage fault, faulty cell, internal short circuit etc. This paper presents a review of a BMS focuses on the protection technique proposed by previous researcher. The comparison has been carried out based on circuit topology and fault detection technique</span>


2020 ◽  
Author(s):  
Wu-Yang Sean ◽  
Ana Pacheco

Abstract For reusing automotive lithium-ion battery, an in-house battery management system is developed. To overcome the issues of life cycle and capacity of reused battery, an online function of estimating battery’s internal resistance and open-circuit voltage based on adaptive control theory are applied for monitoring life cycle and remained capacity of battery pack simultaneously. Furthermore, ultracapacitor is integrated in management system for sharing peak current to prolong life span of reused battery pack. The discharging ratio of ultracapacitor is adjusted manually under Pulse-Width-Modulation signal in battery management system. In case study in 52V LiMnNiCoO2 platform, results of estimated open-circuit voltage and internal resistances converge into stable values within 600(s). These two parameters provide precise estimation for electrical capacity and life cycle. It also shows constrained voltage drop both in the cases of 25% to 75% of ultracapacitors discharging ratio compared with single battery. Consequently, the Life-cycle detection and extending functions integrated in battery management system as a total solution for reused battery are established and verified.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012017
Author(s):  
Ramu Bhukya ◽  
Praveen Kumar Nalli ◽  
Kalyan Sagar Kadali ◽  
Mahendra Chand Bade

Abstract Now a days, Li-ion batteries are quite possibly the most exceptional battery-powered batteries; these are drawing in much consideration from recent many years. M Whittingham first proposed lithium-ion battery technology in the 1970s, using titanium sulphide for the cathode and lithium metal for the anode. Li-ion batteries are the force to be reckoned with for the advanced electronic upset in this cutting-edge versatile society, solely utilized in cell phones and PC computers. A battery is a Pack of cells organized in an arrangement/equal association so the voltage can be raised to the craving levels. Lithium-ion batteries, which are completely utilised in portable gadgets & electric vehicles, are the driving force behind the digital technological revolution in today’s mobile societies. In order to protect and maintain voltage and current of the battery with in safe limit Battery Management System (BMS) should be used. BMS provides thermal management to the battery, safeguarding it against over and under temperature and also during short circuit conditions. The battery pack is designed with series and parallel connected cells of 3.7v to produce 12v. The charging and releasing levels of the battery pack is indicated by interfacing the Arduino microcontroller. The entire equipment is placed in a fiber glass case (looks like aquarium) in order to protect the battery from external hazards to design an efficient Lithium-ion battery by using Battery Management System (BMS). We give the supply to the battery from solar panel and in the absence of this, from a regular AC supply.


2019 ◽  
Vol 68 (5) ◽  
pp. 4110-4121 ◽  
Author(s):  
Rui Xiong ◽  
Yongzhi Zhang ◽  
Ju Wang ◽  
Hongwen He ◽  
Simin Peng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document