Automatic detection of discontinuities from 3D point clouds for the stability analysis of jointed rock masses

Author(s):  
S Garcia-Cortes ◽  
C. Ordonez Galan ◽  
R. Arguelles-Fraga ◽  
A. Menendez Diaz
2014 ◽  
Vol 1030-1032 ◽  
pp. 1074-1077
Author(s):  
Yang Ping ◽  
Shu Chen Li

Controlling the stability of surrounding rocks in underground excavations during in-depth resource development must be confronted with post-peak deformation and failure problems of jointed rock masses. This paper describes routine triaxial compression testing on standard cylinder specimen with persistent joints in different inclinations and under different confining pressures, and analyzes deformation characteristics of rock masses with persistent joints in different inclinations and under different confining pressures. Test results show that the peak strength, residual strength, and peak strain of the jointed specimen basically increase with increasing confining pressures but decrease with increasing joint inclinations. Test results well reflect that it is incorrect to evaluate deformation characteristics of jointed rock masses with continuum mechanics and research results provide a reference for the research on the stability of surrounding rocks in underground excavations.


2011 ◽  
Vol 462-463 ◽  
pp. 1391-1396
Author(s):  
Lu Xiang ◽  
Wei Shen Zhu ◽  
Qing Song Ma ◽  
Kui Zhou

A damage constitutive model was established to evaluate the stability of jointed rock masses around the underground caverns of Shuangjiangkou Hydropower Station. In this model, a second-order damage tensor was formulated to describe the initial geometric imperfection of jointed rock masses. A failure criterion for crack coalescence and a damage evolution equation were proposed by considering the secondary cracks induced by excavations according to the fracture mechanics principles. A subprogram under the framework of FLAC-3D was developed for the damage constitutive model and the damage evolution equation. The model and program were then applied in the stability assessment for the Shuangjiangkou underground cavern group.


2021 ◽  
Vol 13 (5) ◽  
pp. 957
Author(s):  
Guglielmo Grechi ◽  
Matteo Fiorucci ◽  
Gian Marco Marmoni ◽  
Salvatore Martino

The study of strain effects in thermally-forced rock masses has gathered growing interest from engineering geology researchers in the last decade. In this framework, digital photogrammetry and infrared thermography have become two of the most exploited remote surveying techniques in engineering geology applications because they can provide useful information concerning geomechanical and thermal conditions of these complex natural systems where the mechanical role of joints cannot be neglected. In this paper, a methodology is proposed for generating point clouds of rock masses prone to failure, combining the high geometric accuracy of RGB optical images and the thermal information derived by infrared thermography surveys. Multiple 3D thermal point clouds and a high-resolution RGB point cloud were separately generated and co-registered by acquiring thermograms at different times of the day and in different seasons using commercial software for Structure from Motion and point cloud analysis. Temperature attributes of thermal point clouds were merged with the reference high-resolution optical point cloud to obtain a composite 3D model storing accurate geometric information and multitemporal surface temperature distributions. The quality of merged point clouds was evaluated by comparing temperature distributions derived by 2D thermograms and 3D thermal models, with a view to estimating their accuracy in describing surface thermal fields. Moreover, a preliminary attempt was made to test the feasibility of this approach in investigating the thermal behavior of complex natural systems such as jointed rock masses by analyzing the spatial distribution and temporal evolution of surface temperature ranges under different climatic conditions. The obtained results show that despite the low resolution of the IR sensor, the geometric accuracy and the correspondence between 2D and 3D temperature measurements are high enough to consider 3D thermal point clouds suitable to describe surface temperature distributions and adequate for monitoring purposes of jointed rock mass.


Sign in / Sign up

Export Citation Format

Share Document