scholarly journals 3D Thermal Monitoring of Jointed Rock Masses through Infrared Thermography and Photogrammetry

2021 ◽  
Vol 13 (5) ◽  
pp. 957
Author(s):  
Guglielmo Grechi ◽  
Matteo Fiorucci ◽  
Gian Marco Marmoni ◽  
Salvatore Martino

The study of strain effects in thermally-forced rock masses has gathered growing interest from engineering geology researchers in the last decade. In this framework, digital photogrammetry and infrared thermography have become two of the most exploited remote surveying techniques in engineering geology applications because they can provide useful information concerning geomechanical and thermal conditions of these complex natural systems where the mechanical role of joints cannot be neglected. In this paper, a methodology is proposed for generating point clouds of rock masses prone to failure, combining the high geometric accuracy of RGB optical images and the thermal information derived by infrared thermography surveys. Multiple 3D thermal point clouds and a high-resolution RGB point cloud were separately generated and co-registered by acquiring thermograms at different times of the day and in different seasons using commercial software for Structure from Motion and point cloud analysis. Temperature attributes of thermal point clouds were merged with the reference high-resolution optical point cloud to obtain a composite 3D model storing accurate geometric information and multitemporal surface temperature distributions. The quality of merged point clouds was evaluated by comparing temperature distributions derived by 2D thermograms and 3D thermal models, with a view to estimating their accuracy in describing surface thermal fields. Moreover, a preliminary attempt was made to test the feasibility of this approach in investigating the thermal behavior of complex natural systems such as jointed rock masses by analyzing the spatial distribution and temporal evolution of surface temperature ranges under different climatic conditions. The obtained results show that despite the low resolution of the IR sensor, the geometric accuracy and the correspondence between 2D and 3D temperature measurements are high enough to consider 3D thermal point clouds suitable to describe surface temperature distributions and adequate for monitoring purposes of jointed rock mass.

Author(s):  
Arjun Chanmugam ◽  
Rajeev Hatwar ◽  
Cila Herman

Breast cancer is one of the most common and dangerous cancers. Subsurface breast cancer lesions generate more heat and have increased blood supply when compared to healthy tissue, and this temperature rise is mirrored in the skin surface temperature. The rise in temperature on the skin surface, caused by the cancerous lesion, can be measured noninvasively using infrared thermography, which can be used as a diagnostic tool to detect the presence of a lesion. However, its diagnostic ability is limited when image interpretation relies on qualitative principles. In this study, we present a quantitative thermal analysis of breast cancer using a 3D computational model of the breast. The COMSOL FEM software was used to carry out the analysis. The effect of various parameters (tumor size, location, metabolic heat generation and blood perfusion rate) on the surface temperature distribution (which can be measured with infrared thermography) has been analyzed. Key defining features of the surface temperature profile have been identified, which can be used to estimate the size and location of the tumor based on (measured) surface temperature data. In addition, we employed a dynamic cooling process, to analyze surface temperature distributions during cooling and thermal recovery as a function of time. In this study, the effect of the cooling temperature on the enhancement of the temperature differences between normal tissue and cancerous lesions is evaluated. This study demonstrates that a quantification of temperature distributions by computational modeling, combined with thermographic imaging and dynamic cooling can be an important tool in the early detection of breast cancer.


Author(s):  
Jiayong Yu ◽  
Longchen Ma ◽  
Maoyi Tian, ◽  
Xiushan Lu

The unmanned aerial vehicle (UAV)-mounted mobile LiDAR system (ULS) is widely used for geomatics owing to its efficient data acquisition and convenient operation. However, due to limited carrying capacity of a UAV, sensors integrated in the ULS should be small and lightweight, which results in decrease in the density of the collected scanning points. This affects registration between image data and point cloud data. To address this issue, the authors propose a method for registering and fusing ULS sequence images and laser point clouds, wherein they convert the problem of registering point cloud data and image data into a problem of matching feature points between the two images. First, a point cloud is selected to produce an intensity image. Subsequently, the corresponding feature points of the intensity image and the optical image are matched, and exterior orientation parameters are solved using a collinear equation based on image position and orientation. Finally, the sequence images are fused with the laser point cloud, based on the Global Navigation Satellite System (GNSS) time index of the optical image, to generate a true color point cloud. The experimental results show the higher registration accuracy and fusion speed of the proposed method, thereby demonstrating its accuracy and effectiveness.


2020 ◽  
Vol 961 (7) ◽  
pp. 47-55
Author(s):  
A.G. Yunusov ◽  
A.J. Jdeed ◽  
N.S. Begliarov ◽  
M.A. Elshewy

Laser scanning is considered as one of the most useful and fast technologies for modelling. On the other hand, the size of scan results can vary from hundreds to several million points. As a result, the large volume of the obtained clouds leads to complication at processing the results and increases the time costs. One way to reduce the volume of a point cloud is segmentation, which reduces the amount of data from several million points to a limited number of segments. In this article, we evaluated effect on the performance, the accuracy of various segmentation methods and the geometric accuracy of the obtained models at density changes taking into account the processing time. The results of our experiment were compared with reference data in a form of comparative analysis. As a conclusion, some recommendations for choosing the best segmentation method were proposed.


2021 ◽  
Vol 13 (11) ◽  
pp. 2195
Author(s):  
Shiming Li ◽  
Xuming Ge ◽  
Shengfu Li ◽  
Bo Xu ◽  
Zhendong Wang

Today, mobile laser scanning and oblique photogrammetry are two standard urban remote sensing acquisition methods, and the cross-source point-cloud data obtained using these methods have significant differences and complementarity. Accurate co-registration can make up for the limitations of a single data source, but many existing registration methods face critical challenges. Therefore, in this paper, we propose a systematic incremental registration method that can successfully register MLS and photogrammetric point clouds in the presence of a large number of missing data, large variations in point density, and scale differences. The robustness of this method is due to its elimination of noise in the extracted linear features and its 2D incremental registration strategy. There are three main contributions of our work: (1) the development of an end-to-end automatic cross-source point-cloud registration method; (2) a way to effectively extract the linear feature and restore the scale; and (3) an incremental registration strategy that simplifies the complex registration process. The experimental results show that this method can successfully achieve cross-source data registration, while other methods have difficulty obtaining satisfactory registration results efficiently. Moreover, this method can be extended to more point-cloud sources.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1304
Author(s):  
Wenchao Wu ◽  
Yongguang Hu ◽  
Yongzong Lu

Plant leaf 3D architecture changes during growth and shows sensitive response to environmental stresses. In recent years, acquisition and segmentation methods of leaf point cloud developed rapidly, but 3D modelling leaf point clouds has not gained much attention. In this study, a parametric surface modelling method was proposed for accurately fitting tea leaf point cloud. Firstly, principal component analysis was utilized to adjust posture and position of the point cloud. Then, the point cloud was sliced into multiple sections, and some sections were selected to generate a point set to be fitted (PSF). Finally, the PSF was fitted into non-uniform rational B-spline (NURBS) surface. Two methods were developed to generate the ordered PSF and the unordered PSF, respectively. The PSF was firstly fitted as B-spline surface and then was transformed to NURBS form by minimizing fitting error, which was solved by particle swarm optimization (PSO). The fitting error was specified as weighted sum of the root-mean-square error (RMSE) and the maximum value (MV) of Euclidean distances between fitted surface and a subset of the point cloud. The results showed that the proposed modelling method could be used even if the point cloud is largely simplified (RMSE < 1 mm, MV < 2 mm, without performing PSO). Future studies will model wider range of leaves as well as incomplete point cloud.


2021 ◽  
Vol 13 (14) ◽  
pp. 2770
Author(s):  
Shengjing Tian ◽  
Xiuping Liu ◽  
Meng Liu ◽  
Yuhao Bian ◽  
Junbin Gao ◽  
...  

Object tracking from LiDAR point clouds, which are always incomplete, sparse, and unstructured, plays a crucial role in urban navigation. Some existing methods utilize a learned similarity network for locating the target, immensely limiting the advancements in tracking accuracy. In this study, we leveraged a powerful target discriminator and an accurate state estimator to robustly track target objects in challenging point cloud scenarios. Considering the complex nature of estimating the state, we extended the traditional Lucas and Kanade (LK) algorithm to 3D point cloud tracking. Specifically, we propose a state estimation subnetwork that aims to learn the incremental warp for updating the coarse target state. Moreover, to obtain a coarse state, we present a simple yet efficient discrimination subnetwork. It can project 3D shapes into a more discriminatory latent space by integrating the global feature into each point-wise feature. Experiments on KITTI and PandaSet datasets showed that compared with the most advanced of other methods, our proposed method can achieve significant improvements—in particular, up to 13.68% on KITTI.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1228
Author(s):  
Ting On Chan ◽  
Linyuan Xia ◽  
Yimin Chen ◽  
Wei Lang ◽  
Tingting Chen ◽  
...  

Ancient pagodas are usually parts of hot tourist spots in many oriental countries due to their unique historical backgrounds. They are usually polygonal structures comprised by multiple floors, which are separated by eaves. In this paper, we propose a new method to investigate both the rotational and reflectional symmetry of such polygonal pagodas through developing novel geometric models to fit to the 3D point clouds obtained from photogrammetric reconstruction. The geometric model consists of multiple polygonal pyramid/prism models but has a common central axis. The method was verified by four datasets collected by an unmanned aerial vehicle (UAV) and a hand-held digital camera. The results indicate that the models fit accurately to the pagodas’ point clouds. The symmetry was realized by rotating and reflecting the pagodas’ point clouds after a complete leveling of the point cloud was achieved using the estimated central axes. The results show that there are RMSEs of 5.04 cm and 5.20 cm deviated from the perfect (theoretical) rotational and reflectional symmetries, respectively. This concludes that the examined pagodas are highly symmetric, both rotationally and reflectionally. The concept presented in the paper not only work for polygonal pagodas, but it can also be readily transformed and implemented for other applications for other pagoda-like objects such as transmission towers.


Sign in / Sign up

Export Citation Format

Share Document