On DSP-based real time control of an induction motor using sliding mode

Author(s):  
A. Benchaib ◽  
M. Tadjine ◽  
A. Rachid
2009 ◽  
Vol 42 (17) ◽  
pp. 346-351
Author(s):  
M. DJEMAI ◽  
K. BUSAWON ◽  
K. BENMANSOUR ◽  
A. MAROUF

2021 ◽  
Vol 54 (6) ◽  
pp. 903-908
Author(s):  
Amar Bouayad Debbagh ◽  
Mokhtar Bendjebbar ◽  
Mohamed Benslimane ◽  
Mokhtar Zerikat ◽  
Ahmed Allali

Obtaining the required performance, stability, and robustness in real-time control of induction motors usually requires the use of complex controllers, however through multiple experimentations, many challenges have arisen from such methods. The complex structure of control methods in real-time applications is usually computationally challenging and energy consuming, hence the need for a simple control strategy to overcome these challenges, in this paper, we focus on designing an advanced hybrid control strategy with a simple design applied to an induction motor. Mainly, the hybrid controller used in this study has the benefits of joining the best performance of both fuzzy logic controller and sliding mode controller, specifically designed to handle each phase separately, the transition phase and the steady phase. A fuzzy controller intervenes as a supervisor in our control structure, more specifically it manages the switch from one type of control to the other taking into account the intervention phase of each type of controller by commanding the rate of both controllers. Control performance analysis was carried out in a real experimental setup to validate the efficiency and robustness of the proposed hybrid controller and confirm its effectiveness in handling the compromise between overshoot and response time.


Sign in / Sign up

Export Citation Format

Share Document