The simulation method for wide-angle fish-eye image with distortion

Author(s):  
Xiaoyan Mao ◽  
Xiangyu Huang
2021 ◽  
Author(s):  
Yong Liu ◽  
Hongda Lu ◽  
Zhipeng Liu ◽  
Yanbo Zhang ◽  
Ke Pang
Keyword(s):  
Eye Lens ◽  

Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 894 ◽  
Author(s):  
Vijay Kakani ◽  
Hakil Kim ◽  
Jongseo Lee ◽  
Choonwoo Ryu ◽  
Mahendar Kumbham

The study proposes an outlier refinement methodology for automatic distortion rectification of wide-angle and fish-eye lens camera models in the context of streamlining vision-based tasks. The line-members sets are estimated in a scene through accumulation of line candidates emerging from the same edge source. An iterative optimization with an outlier refinement scheme was applied to the loss value, to simultaneously remove the extremely curved outliers from the line-members set and update the robust line members as well as estimating the best-fit distortion parameters with lowest possible loss. The proposed algorithm was able to rectify the distortions of wide-angle and fish-eye cameras even in extreme conditions such as heavy illumination changes and severe lens distortions. Experiments were conducted using various evaluation metrics both at the pixel-level (image quality, edge stretching effects, pixel-point error) as well as higher-level use-cases (object detection, height estimation) with respect to real and synthetic data from publicly available, privately acquired sources. The performance evaluations of the proposed algorithm have been investigated using an ablation study on various datasets in correspondence to the significance analysis of the refinement scheme and loss function. Several quantitative and qualitative comparisons were carried out on the proposed approach against various self-calibration approaches.


1996 ◽  
Author(s):  
Victor S. Grinberg ◽  
Mel Siegel
Keyword(s):  

Author(s):  
H. Hastedt ◽  
T. Ekkel ◽  
T. Luhmann

The application of light-weight cameras in UAV photogrammetry is required due to restrictions in payload. In general, consumer cameras with normal lens type are applied to a UAV system. The availability of action cameras, like the GoPro Hero4 Black, including a wide-angle lens (fish-eye lens) offers new perspectives in UAV projects. With these investigations, different calibration procedures for fish-eye lenses are evaluated in order to quantify their accuracy potential in UAV photogrammetry. Herewith the GoPro Hero4 is evaluated using different acquisition modes. It is investigated to which extent the standard calibration approaches in OpenCV or Agisoft PhotoScan/Lens can be applied to the evaluation processes in UAV photogrammetry. Therefore different calibration setups and processing procedures are assessed and discussed. Additionally a pre-correction of the initial distortion by GoPro Studio and its application to the photogrammetric purposes will be evaluated. An experimental setup with a set of control points and a prospective flight scenario is chosen to evaluate the processing results using Agisoft PhotoScan. Herewith it is analysed to which extent a pre-calibration and pre-correction of a GoPro Hero4 will reinforce the reliability and accuracy of a flight scenario.


2014 ◽  
Vol 310 ◽  
pp. 173-178 ◽  
Author(s):  
Long Wang ◽  
Hongjun Dong ◽  
Weian Zhang ◽  
Xueju Shen
Keyword(s):  
Eye Lens ◽  

Author(s):  
H. Hastedt ◽  
T. Ekkel ◽  
T. Luhmann

The application of light-weight cameras in UAV photogrammetry is required due to restrictions in payload. In general, consumer cameras with normal lens type are applied to a UAV system. The availability of action cameras, like the GoPro Hero4 Black, including a wide-angle lens (fish-eye lens) offers new perspectives in UAV projects. With these investigations, different calibration procedures for fish-eye lenses are evaluated in order to quantify their accuracy potential in UAV photogrammetry. Herewith the GoPro Hero4 is evaluated using different acquisition modes. It is investigated to which extent the standard calibration approaches in OpenCV or Agisoft PhotoScan/Lens can be applied to the evaluation processes in UAV photogrammetry. Therefore different calibration setups and processing procedures are assessed and discussed. Additionally a pre-correction of the initial distortion by GoPro Studio and its application to the photogrammetric purposes will be evaluated. An experimental setup with a set of control points and a prospective flight scenario is chosen to evaluate the processing results using Agisoft PhotoScan. Herewith it is analysed to which extent a pre-calibration and pre-correction of a GoPro Hero4 will reinforce the reliability and accuracy of a flight scenario.


Sign in / Sign up

Export Citation Format

Share Document