Spatial multiplexing and diversity gain in OFDM-based MIMO systems

Author(s):  
H.M. Karkhanechi ◽  
B.C. Levy
2011 ◽  
Vol 30 (1) ◽  
pp. 81-85
Author(s):  
Er-lin Zeng ◽  
Shi-hua Zhu ◽  
Xue-wen Liao ◽  
Jun Wang

2020 ◽  
Vol 14 ◽  
Author(s):  
Keerti Tiwari

: Multiple-input multiple-output (MIMO) systems have been endorsed to enable future wireless communication requirements. The efficient system designing appeals an appropriate channel model, that considers all the dominating effects of wireless environment. Therefore, some complex or less analytically acquiescent composite channel models have been proposed typically for single-input single-output (SISO) systems. These models are explicitly employed for mobile applications, though, we need a specific study of a model for MIMO system which can deal with radar clutters and different indoor/outdoor and mobile communication environments. Subsequently, the performance enhancement of MIMO system is also required in such scenario. The system performance enhancement can be examined by low error rate and high capacity using spatial diversity and spatial multiplexing respectively. Furthermore, for a more feasible and practical system modeling, we require a generalized noise model along with a composite channel model. Thus, all the patents related to MIMO channel models are revised to achieve the near optimal system performance in real world scenario. This review paper offers the methods to improve MIMO system performance in less and severe fading as well as shadowing environment and focused on a composite Weibull-gamma fading model. The development is the collective effects of selecting the appropriate channel models, spatial multiplexing/detection and spatial diversity techniques both at the transmitter and the receivers in the presence of arbitrary noise.


Author(s):  
Muhammad Rahman ◽  
Nicola Marchetti ◽  
Elisabeth de Carvalho ◽  
Ramjee Prasad

Author(s):  
Mujeeb Ahmed

Multiple transmit and receive antenna systems have improved the reliability as well as data rate in a wireless communication system. Such advanced wireless architectures have empowered smart devices to fulfill the demand of multimedia content. Image is a major user generated content in wide range of applications, hence reliable transmission of image is an important research problem. New transmission and coding schemes that explore advantages of multiple antenna systems matched with source statistics have been developed. Based on a similar idea, an equal power allocation scheme for transmission of compressed images over multiple-input multiple-output (MIMO) systems employing partial repetition coding is proposed. The JPEG compression algorithm divides image into different quality layers. The proposed system repeats transmission of high quality data from more than one antenna as compared to the lower quality data which is transmitted using one antenna at most, in a particular time slot. A heuristic spatial multiplexing scheme is also proposed to optimally divide the bit stream chunks for transmission. Extensive simulations have shown that equal power allocation and repetition coding scheme is better as compared to reference schemes.


Author(s):  
Simon Wissam Tarbouche ◽  
Abdel-Nasser Assimi

Generalized frequency division multiplexing (GFDM) is a prominent candidate to be used by the mobile Fifth Generation (5G) physical layer. Nevertheless, the integration of GFDM with Spatial Multiplexing (SM) MIMO system is essential to fulfill the data rate requirements. SM detection of MIMO-GFDM becomes a more challenging topic because of ICI and ISI due to the non-orthogonal nature of GFDM, along with IAI. In this article, the authors propose a system that combines the Offset-Quadrature Amplitude Modulation (OQAM) with GFDM to mitigate self-induced interference, by using a simple Matched Filter (MF) detector and minimum additional processing at the receiver. Simulation results show a considerable achieved improvement in BER by the proposed OQAM/GFDM compared to QAM/GFDM when using MMSE-based Ordered Successive Interference Cancellation (OSIC) detector. Furthermore, this system is unaffected by the roll-off factor variations of used pulse-shaping filters.


2014 ◽  
Vol 14 (2) ◽  
pp. 97-102
Author(s):  
SR Aryal ◽  
H Dhungana

There are no limit of human desire, so day by day we need much higher data speed to facilitate our need but every physical resource like frequency band, transmit signal strength are finite. Within the given limited resource, higher data speed is accomplished by new proficiency called Multiple Input Multiple Output (MIMO), Orthogonal Frequency Division Multiplexing (OFDM) system. MIMO-OFDM fulfills the high data rate requirement through spatial multiplexing gain and improved link reliability due to antenna diversity gain. With this technique, both interference reduction and maximum diversity gain are achieved by increasing number of antennae on either side. Received signal in MIMO-OFDM system is usually distorted by multipath fading. In order to recover the transmitted signal correctly, channel effect must be estimated and repaired at receiver. In this paper the performance evaluating parameter mean square error and symbol error rate of least square error, minimum mean square error and DFT based channel estimation methods are estimated and appropriate solution is recommended. Furthermore, comparison among their characteristics is simulated in MATLAB and useful conclusion is delineated. DOI: http://dx.doi.org/10.3126/njst.v14i2.10421   Nepal Journal of Science and Technology Vol. 14, No. 2 (2013) 97-102


2006 ◽  
Vol 10 (5) ◽  
pp. 390-392 ◽  
Author(s):  
M. Magarini ◽  
A. Spalvieri

2020 ◽  
Vol 10 (19) ◽  
pp. 6809
Author(s):  
Hyun-Sun Hwang ◽  
Jae-Hyun Ro ◽  
Young-Hwan You ◽  
Duckdong Hwang ◽  
Hyoung-Kyu Song

A number of requirements for 5G mobile communication are satisfied by adopting multi-user multiple input multiple output (MU-MIMO) systems. The inter user interference (IUI) which is an inevitable problem in MU-MIMO systems becomes controllable when the precoding scheme is used. The proposed scheme, which is one of the precoding schemes, is built on regularized block diagonalization (RBD) precoding and utilizes the partial nulling concept, which is to leave part of the IUI at the same time. Diversity gain is obtained by leaving IUI, which is made by choosing the row vectors of the channel matrix that are not nullified. Since the criterion for choosing the row vectors of the channel is the power of the channel, the number of selected row vectors of the channel for each device can be unfair. The proposed scheme achieves performance enhancement by obtaining diversity gain. Therefore, the bit error rate (BER) performance is better and the computational complexity is lower than RBD when the same data rate is achieved. When the number of reduced data streams is not enough for most devices to achieve diversity gain, the proposed scheme has better performance compared to generalized block diagonalization (GBD). The low complexity at the receiver is achieved compared to GBD by using the simple way to remove IUI.


Sign in / Sign up

Export Citation Format

Share Document