scholarly journals Named Data Networking: A natural design for data collection in Wireless Sensor Networks

Author(s):  
Marica Amadeo ◽  
Claudia Campolo ◽  
Antonella Molinaro ◽  
Nathalie Mitton
2021 ◽  
Vol 10 (2) ◽  
pp. 28
Author(s):  
Saeid Pourroostaei Ardakani

Mobile agents have the potential to offer benefits, as they are able to either independently or cooperatively move throughout networks and collect/aggregate sensory data samples. They are programmed to autonomously move and visit sensory data stations through optimal paths, which are established according to the application requirements. However, mobile agent routing protocols still suffer heavy computation/communication overheads, lack of route planning accuracy and long-delay mobile agent migrations. For this, mobile agent route planning protocols aim to find the best-fitted paths for completing missions (e.g., data collection) with minimised delay, maximised performance and minimised transmitted traffic. This article proposes a mobile agent route planning protocol for sensory data collection called MINDS. The key goal of this MINDS is to reduce network traffic, maximise data robustness and minimise delay at the same time. This protocol utilises the Hamming distance technique to partition a sensor network into a number of data-centric clusters. In turn, a named data networking approach is used to form the cluster-heads as a data-centric, tree-based communication infrastructure. The mobile agents utilise a modified version of the Depth-First Search algorithm to move through the tree infrastructure according to a hop-count-aware fashion. As the simulation results show, MINDS reduces path length, reduces network traffic and increases data robustness as compared with two conventional benchmarks (ZMA and TBID) in dense and large wireless sensor networks.


2017 ◽  
Vol 13 (7) ◽  
pp. 155014771771759 ◽  
Author(s):  
Yalin Nie ◽  
Haijun Wang ◽  
Yujie Qin ◽  
Zeyu Sun

When monitoring the environment with wireless sensor networks, the data sensed by the nodes within event backbone regions can adequately represent the events. As a result, identifying event backbone regions is a key issue for wireless sensor networks. With this aim, we propose a distributed and morphological operation-based data collection algorithm. Inspired by the use of morphological erosion and dilation on binary images, the proposed distributed and morphological operation-based data collection algorithm calculates the structuring neighbors of each node based on the structuring element, and it produces an event-monitoring map of structuring neighbors with less cost and then determines whether to erode or not. The remaining nodes that are not eroded become the event backbone nodes and send their sensing data. Moreover, according to the event backbone regions, the sink can approximately recover the complete event regions by the dilation operation. The algorithm analysis and experimental results show that the proposed algorithm can lead to lower overhead, decrease the amount of transmitted data, prolong the network lifetime, and rapidly recover event regions.


2010 ◽  
Vol 17 (2) ◽  
pp. 305-318 ◽  
Author(s):  
Siyuan Chen ◽  
Yu Wang ◽  
Xiang-Yang Li ◽  
Xinghua Shi

Sign in / Sign up

Export Citation Format

Share Document