A Multiagent System-Based Solution for Shipment Operations with Priorities in a Container Terminal

Author(s):  
Leonardo Martins Rodrigues ◽  
Gracaliz Pereira Dimuro ◽  
Antônio Carlos da Rocha Costa ◽  
Leonardo Ramos Emmendorfer
2018 ◽  
Vol 6 (5) ◽  
pp. 144-149
Author(s):  
H. Kousar ◽  
◽  
◽  
B.R.P. Babu

2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110355
Author(s):  
Tomas Eglynas ◽  
Sergej Jakovlev ◽  
Valdas Jankunas ◽  
Rimantas Didziokas ◽  
Jolanta Januteniene ◽  
...  

Introduction: In the paper, we examine the energy consumption efficiency of specialized container diesel trucks engaged in container transportation at a seaport terminal. Objectives: Using the container terminal at Klaipėda in Lithuania as the background for the research, we produced an improved energy consumption model for measuring the theoretical energy consumption and regeneration of diesel trucks at the terminal and provide a comparative analysis. Methods: We created a mathematical model which describes the instantaneous energy consumption of the diesel trucks, taking into account their dynamic properties and the overall geometry of their routes—“Ship-Truck-Stack-Ship”—using the superposition principle. We investigated other critical parameters relevant to the model and provide a statistical evaluation of the transportation process using data from a case study of Klaipėda port, where we collected measurements of container transportation parameters using georeferenced movement detection and logs from wireless equipment positioned on the diesel-powered container trucks. Results: The modeling results showed that an instantaneous evaluation of energy consumption can reveal areas in the container transportation process which have the highest energy loss and require the introduction of new management and process control initiatives to address the regulations which are designed to decrease harmful industrial emissions and encourage novel technologies and thereby increase the eco-friendliness of existing systems. Conclusion: Based on the research results, the article can provide a reference for the estimation of diesel truck efficiency in seaport terminal operations.


Author(s):  
Cuong Truong Ngoc ◽  
Xiao Xu ◽  
Hwan-Seong Kim ◽  
Duy Anh Nguyen ◽  
Sam-Sang You

This paper deals with three-dimensional (3D) model of competitive Lotka-Volterra equation to investigate nonlinear dynamics and control strategy of container terminal throughput and capacity. Dynamical behaviors are intensely explored by using eigenvalue evaluation, bifurcation analysis, and time-series data. The dynamical analysis is to show the stability with bifurcation of the competition and collaboration of multiple container terminals in the maritime transportation. Based on the chaotic analysis, the sliding mode control theory has been utilized for optimization of port operations under disruptions. Extensive numerical simulations have been conducted to validate the efficacy and reliability of the presented control algorithms. Particularly, the closed-loop system has been assessed through chaotic suppression and synchronization strategies for port management. Finally, the presented fundamental techniques can be utilized to provide managerial insights and solutions on efficient seaport operations that allow more timely and cost-effective decision making for port authorities in such a highly competitive environment.


2017 ◽  
Vol 34 ◽  
pp. 101-113 ◽  
Author(s):  
Caimao Tan ◽  
Junliang He ◽  
Yu Wang

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muhammad Arif Budiyanto ◽  
Muhammad Hanzalah Huzaifi ◽  
Simon Juanda Sirait ◽  
Putu Hangga Nan Prayoga

AbstractSustainable development of container terminals is based on energy efficiency and reduction in CO2 emissions. This study estimated the energy consumption and CO2 emissions in container terminals according to their layouts. Energy consumption was calculated based on utility data as well as fuel and electricity consumptions for each container-handling equipment in the container terminal. CO2 emissions were estimated using movement modality based on the number of movements of and distance travelled by each container-handling equipment. A case study involving two types of container terminal layouts i.e. parallel and perpendicular layouts, was conducted. The contributions of each container-handling equipment to the energy consumption and CO2 emissions were estimated and evaluated using statistical analysis. The results of the case study indicated that on the CO2 emissions in parallel and perpendicular layouts were relatively similar (within the range of 16–19 kg/TEUs). These results indicate that both parallel and perpendicular layouts are suitable for future ports based on sustainable development. The results can also be used for future planning of operating patterns and layout selection in container terminals.


Sign in / Sign up

Export Citation Format

Share Document