Embedded high performance computing for on-board hyperspectral image classification

Author(s):  
Pankaj H. Randhe ◽  
Surya S. Durbha ◽  
Nicolas H. Younan
2021 ◽  
Vol 13 (2) ◽  
pp. 324
Author(s):  
Lei Qu ◽  
Xingliang Zhu ◽  
Jiannan Zheng ◽  
Liang Zou

Convolutional neural networks have been highly successful in hyperspectral image classification owing to their unique feature expression ability. However, the traditional data partitioning strategy in tandem with patch-wise classification may lead to information leakage and result in overoptimistic experimental insights. In this paper, we propose a novel data partitioning scheme and a triple-attention parallel network (TAP-Net) to enhance the performance of HSI classification without information leakage. The dataset partitioning strategy is simple yet effective to avoid overfitting, and allows fair comparison of various algorithms, particularly in the case of limited annotated data. In contrast to classical encoder–decoder models, the proposed TAP-Net utilizes parallel subnetworks with the same spatial resolution and repeatedly reuses high-level feature maps of preceding subnetworks to refine the segmentation map. In addition, a channel–spectral–spatial-attention module is proposed to optimize the information transmission between different subnetworks. Experiments were conducted on three benchmark hyperspectral datasets, and the results demonstrate that the proposed method outperforms state-of-the-art methods with the overall accuracy of 90.31%, 91.64%, and 81.35% and the average accuracy of 93.18%, 87.45%, and 78.85% over Salinas Valley, Pavia University and Indian Pines dataset, respectively. It illustrates that the proposed TAP-Net is able to effectively exploit the spatial–spectral information to ensure high performance.


2020 ◽  
Vol 12 (19) ◽  
pp. 3137
Author(s):  
Wijayanti Nurul Khotimah ◽  
Mohammed Bennamoun ◽  
Farid Boussaid ◽  
Ferdous Sohel ◽  
David Edwards

In this paper, we propose a high performance Two-Stream spectral-spatial Residual Network (TSRN) for hyperspectral image classification. The first spectral residual network (sRN) stream is used to extract spectral characteristics, and the second spatial residual network (saRN) stream is concurrently used to extract spatial features. The sRN uses 1D convolutional layers to fit the spectral data structure, while the saRN uses 2D convolutional layers to match the hyperspectral spatial data structure. Furthermore, each convolutional layer is preceded by a Batch Normalization (BN) layer that works as a regularizer to speed up the training process and to improve the accuracy. We conducted experiments on three well-known hyperspectral datasets, and we compare our results with five contemporary methods across various sizes of training samples. The experimental results show that the proposed architecture can be trained with small size datasets and outperforms the state-of-the-art methods in terms of the Overall Accuracy, Average Accuracy, Kappa Value, and training time.


MRS Bulletin ◽  
1997 ◽  
Vol 22 (10) ◽  
pp. 5-6
Author(s):  
Horst D. Simon

Recent events in the high-performance computing industry have concerned scientists and the general public regarding a crisis or a lack of leadership in the field. That concern is understandable considering the industry's history from 1993 to 1996. Cray Research, the historic leader in supercomputing technology, was unable to survive financially as an independent company and was acquired by Silicon Graphics. Two ambitious new companies that introduced new technologies in the late 1980s and early 1990s—Thinking Machines and Kendall Square Research—were commercial failures and went out of business. And Intel, which introduced its Paragon supercomputer in 1994, discontinued production only two years later.During the same time frame, scientists who had finished the laborious task of writing scientific codes to run on vector parallel supercomputers learned that those codes would have to be rewritten if they were to run on the next-generation, highly parallel architecture. Scientists who are not yet involved in high-performance computing are understandably hesitant about committing their time and energy to such an apparently unstable enterprise.However, beneath the commercial chaos of the last several years, a technological revolution has been occurring. The good news is that the revolution is over, leading to five to ten years of predictable stability, steady improvements in system performance, and increased productivity for scientific applications. It is time for scientists who were sitting on the fence to jump in and reap the benefits of the new technology.


Sign in / Sign up

Export Citation Format

Share Document