Outage Performance Comparison of Dual-Hop Half/Full Duplex Wireless UAV System over Weibull Fading Channel

Author(s):  
Mitali Gupta ◽  
J. Anandpushparaj ◽  
P. Muthuchidambaranathan ◽  
Dushantha Nalin K. Jayakody
Author(s):  
Rampravesh Kumar ◽  
Sanjay Kumar

This work evaluates the sum rate performance for dual user with full duplex co-operative non-orthogonal multiple access (FD-CNOMA) over Weibull fading channel environment. For this, we derived closed form expressions for sum-rate in various scenario in downlink and uplink both. One user always acts as decode and forward full duplex relay to help far users in each scenario. In the first scenario, no direct link exists between base station (BS) and far user. In second scenario, direct link exists between BS and far user. The main investigation is to study the effect of fading parameters in different channel condition on sum-rate performance. Since, Weibull Distribution (WD) has an advantage to model different fading condition using varying parameter it is more suitable to study impact of fading condition on different wireless techniques for next generation mobile cellular communication. Therefore, WD is used in this study for sum rate performance evaluation with derived expressions. Finally, simulations were conducted on MATLAB to evaluate the system performance under different fading parameters of Weibull fading channels .


Author(s):  
R. Rajesh ◽  
P. G. S. Velmurugan ◽  
S. J. Thiruvengadam ◽  
P. S. Mallick

In this paper, a bidirectional full-duplex amplify- and-forward (AF) relay network with multiple antennas at source nodes is proposed. Assuming that the channel state information is known at the source nodes, transmit antenna selection and maximal ratio combining (MRC) are employed when source nodes transmit information to the relay node and receive information from the relay node respectively, in order to improve the overall signal-to-interference plus noise ratio (SINR). Analytical expressions are derived for tight upper bound SINR at the relay node and source nodes upon reception. Further, losed form expressions are also derived for end-to-end outage probability of the proposed bidirectional full-duplex AF relay network in the Nakagami-m fading channel environment. Although self-interference at the relay node limits the performance of the full-duplex network, the outage performance of the proposed network is better than that of conventional bidirectional full-duplex and half-duplex AF relay networks, due to the selection diversity gain in TAS and diversity and array gain in MRC.


Sign in / Sign up

Export Citation Format

Share Document