A multi-channel approach for segmentation of solar corona in images from the solar dynamics observatory

Author(s):  
Santosh Suresh ◽  
Roger Dube
2011 ◽  
Vol 7 (S286) ◽  
pp. 238-241
Author(s):  
Federico A. Nuevo ◽  
Alberto M. Vásquez ◽  
Richard A. Frazin ◽  
Zhenguang Huang ◽  
Ward B. Manchester

AbstractWe recently extended the differential emission measure tomography (DEMT) technique to be applied to the six iron bands of the Atmospheric Imaging Assembly (AIA) instrument aboard the Solar Dynamics Observatory (SDO). DEMT products are the 3D reconstruction of the coronal emissivity in the instrument's bands, and the 3D distribution of the local differential emission measure, in the height range 1.0 to 1.25 R⊙. We show here derived maps of the electron density and temperature of the inner solar corona during the rising phase of solar Cycle 24. We discuss the distribution of our results in the context of open/closed magnetic regions, as derived from a global potential field source surface (PFSS) model of the same period. We also compare the results derived with SDO/AIA to those derived with the Extreme UltraViolet Imager (EUVI) instrument aboard the Solar TErrestrial RElations Observatory (STEREO).


2018 ◽  
Vol 617 ◽  
pp. A8
Author(s):  
Elmar Träbert ◽  
Peter Beiersdorfer

Aims. For a more complete interpretation of the extreme-ultraviolet (EUV) spectra of the solar corona, it is beneficial to acquire laboratory data of specific chemical elements obtained under coronal conditions. Methods. The EUV spectra of He, C, N, O, F, Ne, S, Ar, Fe, and Ni in a 30 Å wide wavelength interval near 335 have been excited in an electron beam ion trap. Results. We observe just under 200 lines, almost half of which are not yet identified and included in spectral models. Conclusions. Our data serve as a check on atomic databases that are used to interpret solar corona data such as collected by the Solar Dynamics Observatory spacecraft or the EUNIS instrument on sounding rockets. Our findings largely corroborate the databases. However, the accumulated flux of a multitude of mostly weak additional lines is comparable to that of various primary lines.


2014 ◽  
Vol 4 (2) ◽  
pp. 555-564
Author(s):  
A.M Aslam

On September 24, 2011 a solar flare of M 7.1 class was released from the Sun. The flare was observed by most of the space and ground based observatories in various wavebands. We have carried out a study of this flare to understand its causes on Sun and impact on earth. The flare was released from NOAA active region AR 11302 at 12:33 UT. Although the region had already produced many M class flares and one X- class flare before this flare, the magnetic configuration was not relaxed and still continued to evolve as seen from HMI observations. From the Solar Dynamics Observatory (SDO) multi-wavelength (131 Ã…, 171 Ã…, 304 Ã… and 1600Ã…) observations we identified that a rapidly rising flux rope triggered the flare although HMI observations revealed that magnetic configuration did not undergo a much pronounced change. The flare was associated with a halo Coronal Mass Ejection (CME) as recorded by LASCO/SOHO Observations. The flare associated CME was effective in causing an intense geomagnetic storm with minimum Dst index -103 nT. A radio burst of type II was also recorded by the WAVES/WIND. In the present study attempt is made to study the nature of coupling between solar transients and geospace.


1984 ◽  
Vol 86 ◽  
pp. 155-158 ◽  
Author(s):  
Giancarlo Noci

In the past years several space missions have been proposed for the study of the Sun and of the Heliosphere. These missions were intended to clarify various different aspects of solar physics. For example, the GRIST (Grazing Incidence Solar Telescope) mission was intended as a means to improve our knowledge of the upper transition region and low corona through the detection of the solar EUV spectrum with a spatial resolution larger than in previous missions; the DISCO (Dual Spectral Irradiance and Solar Constant Orbiter) and SDO (Solar Dynamics Observatory) missions were proposed to gat observational data about the solar oscillations better than those obtained from ground based instruments; the SOHO (Solar and Heliospheric Observatory) mission was initially proposed to combine the properties of GRIST with the study of the extended corona (up to several radii of heliocentric distance) by observing the scattered Ly-alpha and OVI radiation, which was also the basis of the SCE (Solar Corona Explorer) mission proposal; the development of the interest about the variability of the Sun, both in itself and for its consequences in the history of the Earth, led to propose observations of the solar constant (included in DISCO).


Solar Physics ◽  
2021 ◽  
Vol 296 (6) ◽  
Author(s):  
Thomas Williams ◽  
Robert W. Walsh ◽  
Stephane Regnier ◽  
Craig D. Johnston

AbstractCoronal loops form the basic building blocks of the magnetically closed solar corona yet much is still to be determined concerning their possible fine-scale structuring and the rate of heat deposition within them. Using an improved multi-stranded loop model to better approximate the numerically challenging transition region, this article examines synthetic NASA Solar Dynamics Observatory’s (SDO) Atmospheric Imaging Assembly (AIA) emission simulated in response to a series of prescribed spatially and temporally random, impulsive and localised heating events across numerous sub-loop elements with a strong weighting towards the base of the structure: the nanoflare heating scenario. The total number of strands and nanoflare repetition times is varied systematically in such a way that the total energy content remains approximately constant across all the cases analysed. Repeated time-lag detection during an emission time series provides a good approximation for the nanoflare repetition time for low-frequency heating. Furthermore, using a combination of AIA 171/193 and 193/211 channel ratios in combination with spectroscopic determination of the standard deviation of the loop-apex temperature over several hours alongside simulations from the outlined multi-stranded loop model, it is demonstrated that both the imposed heating rate and number of strands can be realised.


2018 ◽  
Vol 615 ◽  
pp. A47 ◽  
Author(s):  
Srividya Subramanian ◽  
Vinay L. Kashyap ◽  
Durgesh Tripathi ◽  
Maria S. Madjarska ◽  
John G. Doyle

We study the thermal structure and energetics of the point-like extreme ultraviolet (EUV) brightenings within a system of fan loops observed in the active region AR 11520. These brightenings were simultaneously observed on 2012 July 11 by the High-resolution Coronal (Hi-C) imager and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). We identified 27 brightenings by automatically determining intensity enhancements in both Hi-C and AIA 193 Å light curves. The energetics of these brightenings were studied using the Differential Emission Measure (DEM) diagnostics. The DEM weighted temperatures of these transients are in the range log T(K) = 6.2−6.6 with radiative energies ≈1024−25 ergs and densities approximately equal to a few times 109 cm−3. To the best of our knowledge, these are the smallest brightenings in EUV ever detected. We used these results to determine the mechanism of energy loss in these brightenings. Our analysis reveals that the dominant mechanism of energy loss for all the identified brightenings is conduction rather than radiation.


Author(s):  
Юрий Фурсяк ◽  
Андрей Плотников ◽  
Валентина Абраменко

Используя магнитографические данные прибора Helioseismic and Magnetic Imager (HMI) на борту космического аппарата Solar Dynamics Observatory (SDO), мы вычислили параметры магнитного поля и электрических токов для униполярных активных областей (АО) с низкой (≤ 2.1 × 1019 Мкс ч−1, всего исследовано 11 АО) и высокой (≥ 7.0 × 1019 Мкс ч−1, проанализиро-вано 5 АО) скоростью затухания магнитного потока в пятне. Получены следующие результаты: 1) чем сильнее локальные (мелкомасштабные) электрические токи в окрестности униполярного пятна, тем быстрее оно затухает; 2) распределенный (глобальный, крупномасштабный) электрический ток вокруг быстро затухающих пятен практически нулевой, и от него не приходится ожидать стабилизирующего воздействия на процесс распада пятна; 3) для четырех случаев медленно затухающих пятен выявлен ненулевой распределенный электрический ток величиной до 5.0 × 1012 А. Такой ток может оказывать стабилизирующее  действие на распад пятна. Таким образом, полученные нами результаты указывают на то, что электрические токи малых масштабов оказывают скорее деструктивное воздействие на пятно, а присутствие крупномасштабных токов может стабилизировать пятно. Однако данный механизм, по-видимому, не является единственным и доминирующим в процессах стабилизации пятен.


Sign in / Sign up

Export Citation Format

Share Document