Relay assisted Multiple Input Multiple Output wireless communication system for Multiple Access Channel using Hybrid-STBC-VBLAST

Author(s):  
M.M. Kamruzzaman
2021 ◽  
Vol 2134 (1) ◽  
pp. 012025
Author(s):  
Dmitriy Pokamestov ◽  
Yakov Kryukov ◽  
Eugeniy Rogozhnikov ◽  
Islam Kanatbekuli ◽  
Edgar Dmitriyev

Abstract Sparse code multiple access (SCMA) is one of the promising implementations of non-orthogonal multiple access (NOMA) methods. SCMA provides high spectral efficiency and a large number of network resources. We describe a communication system with SCMA, space-time block coding (STBC), multiple input multiple output (MIMO) technology, and orthogonal frequency division multiplexing (OFDM). The architecture of such systems, including algorithms of formation and processing of signals is considered. A method for adapting signals to the state of the spatial channel transmission based on information about the matrix of channel coefficients is proposed. The application of such adaptation allows to compensate the influence of the channel and to reduce the probability of bit errors. We consider the bit error rate (BER) performance of the communication system in different channel models and show the effectiveness of the proposed methods.


2019 ◽  
Vol 8 (3) ◽  
pp. 7692-7698

The tremendous growth of traffic in wireless communication (WC) system has resulted in inadequate network capacity. 5th Generation (5G) is seen as next generation wireless communication system implemented with massive multiple-input multiple-output (M-MIMO) technology. It will play major role in future communication system. M-MIMO objective is high throughput and high speed. Beamforming technique is a key to high throughput objective - achieved by reduction in errors occurring in data transmission and reception. The intent of this research paper is to review - beam forming techniques implemented in M-MIMO and research work in this particular area. Paper classifies optimized beamforming techniques in detail for determining appropriate techniques that can be deployed in M-MIMO. Understanding limitations of present techniques and suggesting new approach for better throughput is outcome of retrospective analysis.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Panagiotis K. Gkonis ◽  
Maria A. Seimeni ◽  
Nikolaos P. Asimakis ◽  
Dimitra I. Kaklamani ◽  
Iakovos S. Venieris

The goal of the study presented in this paper is to investigate the performance of a new subcarrier allocation strategy for Orthogonal Frequency Division Multiple Access (OFDMA) multicellular networks which employ Multiple Input Multiple Output (MIMO) architecture. For this reason, a hybrid system-link level simulator has been developed executing independent Monte Carlo (MC) simulations in parallel. Up to two tiers of cells around the central cell are taken into consideration and increased loading per cell. The derived results indicate that this strategy can provide up to 12% capacity gain for 16-QAM modulation and two tiers of cells around the central cell in a symmetric2×2MIMO configuration. This gain is derived when comparing the proposed strategy to the traditional approach of allocating subcarriers that maximize only the desired user’s signal.


Sign in / Sign up

Export Citation Format

Share Document