scholarly journals Massive MIMO and Hybrid Optimization for It's Beamforming

2019 ◽  
Vol 8 (3) ◽  
pp. 7692-7698

The tremendous growth of traffic in wireless communication (WC) system has resulted in inadequate network capacity. 5th Generation (5G) is seen as next generation wireless communication system implemented with massive multiple-input multiple-output (M-MIMO) technology. It will play major role in future communication system. M-MIMO objective is high throughput and high speed. Beamforming technique is a key to high throughput objective - achieved by reduction in errors occurring in data transmission and reception. The intent of this research paper is to review - beam forming techniques implemented in M-MIMO and research work in this particular area. Paper classifies optimized beamforming techniques in detail for determining appropriate techniques that can be deployed in M-MIMO. Understanding limitations of present techniques and suggesting new approach for better throughput is outcome of retrospective analysis.

Crystals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 408 ◽  
Author(s):  
Ye Xiao ◽  
Yi-Jun Zhu ◽  
Zheng-Guo Sun

Multiple-input multiple-output (MIMO) technology as an efficient approach to improve the transmission rate in visible light communication (VLC) has been well studied in recent years. In this paper, we focus on the MIMO VLC system using multi-color LEDs in the typical indoor scenario. Besides the correlation of the MIMO channel, the multi-color crosstalk interference and quadrangle chromaticity region are also considered to increase the practicality of this system. With the constraints of power, amplitude and chromaticity, an iterative algorithm to minimize mean-squared-error (MSE) is proposed to jointly design the precoder and equalizer. Our proposed algorithm provides an effective method to get the optimal precoder by updating optimization variables iteratively. As the equalizer matrix is fixed at each iteration, the main non-convex precoding design problem is transformed into a convex optimization problem and then solved. With the utilization of multi-color LEDs, our proposed precoding method would be promising to promote the practical applications of high-speed indoor optical wireless communication. Simulation results show that our proposed method owns better performance than conventional chromaticity-fixed schemes and zero-forcing precoding designs.


Author(s):  
Maharshi K. Bhatt ◽  
Bhavin S. Sedani ◽  
Komal Borisagar

This paper analytically reviews the performance of massive multiple input multiple output (MIMO) system for communication in highly mobility scenarios like high speed Railways. As popularity of high speed train increasing day by day, high data rate wireless communication system for high speed train is extremely required. 5G wireless communication systems must be designed to meet the requirement of high speed broadband services at speed of around 500 km/h, which is the expected speed achievable by HSR systems, at a data rate of 180 Mbps or higher. Significant challenges of high mobility communications are fast time-varying fading, channel estimation errors, doppler diversity, carrier frequency offset, inter carrier interference, high penetration loss and fast and frequent handovers. Therefore, crucial requirement to design high mobility communication channel models or systems prevails. Recently, massive MIMO techniques have been proposed to significantly improve the performance of wireless networks for upcoming 5G technology. Massive MIMO provide high throughput and high energy efficiency in wireless communication channel. In this paper, key findings, challenges and requirements to provide high speed wireless communication onboard the high speed train is pointed out after thorough literature review. In last, future research scope to bridge the research gap by designing efficient channel model by using massive MIMO and other optimization method is mentioned.


2013 ◽  
Vol 475-476 ◽  
pp. 863-866
Author(s):  
Rui Zhu ◽  
Da Hai Han

Explorations on ultraviolet (UV) communication field are relatively little among wireless communication for lacking of suitable simulation equipments. Possible mode was investigated on UV by combining mature coding techniques with gradually improved multiple-input multiple-output (MIMO) technology. A candidate modulation method, the 16-ary quadrature-amplitude modulation (16QAM), was analyzed for UV communication using MIMO technology. Comparisons between 16QAM and OOK were presented to better depict characteristics of 16QAM through simulation. The result shows that under specific bit error rate (BER) requirements for most communication environments, 16QAM can help save transmitting power and enlarges transmission capacity.


2014 ◽  
Vol 643 ◽  
pp. 111-116
Author(s):  
Jia Yin Chen ◽  
Yuan Li ◽  
Ming Chuan Yang ◽  
Xiao Feng Liu

Applying Multiple-Input Multiple-Output (MIMO) technology in terrestrial wireless networks can obtain large capacity gain. Therefore, MIMO technology is widely applied in satellite communication system, in which orbital positions are increasingly crowded and frequency resources are of shortage. This paper attempts to research on channel capacity in 2×2 dual-polarized MIMO mobile satellite (DMMS) system and discovers that when XPD (Cross Polarization Discrimination) is above zero, the channel capacity increases approximately linearly with the XPD within certain range. Adding Ricean factor K in consideration of its special features,the system’s capacity increases with the Ricean factor K. Simulation results demonstrate that the application of MIMO technology in satellite mobile communication system can improve the channel capacity significantly, providing great support for the development of future satellite MIMO technology.


Sign in / Sign up

Export Citation Format

Share Document