Convergence properties of iterative turbo decoding based on the number of searched states

Author(s):  
A. Assalini ◽  
M. Borgo ◽  
S. Pupolin
1998 ◽  
Vol 14 (4) ◽  
pp. 767-800
Author(s):  
Claude Bélisle ◽  
Arnon Boneh ◽  
Richard J. Caron

2013 ◽  
Vol 32 (8) ◽  
pp. 2113-2115
Author(s):  
Zheng LI ◽  
Chun-lin SONG ◽  
Yun-jie ZHAO ◽  
Zhu-jia WU

Author(s):  
Florian Mannel

AbstractWe consider the Broyden-like method for a nonlinear mapping $F:\mathbb {R}^{n}\rightarrow \mathbb {R}^{n}$ F : ℝ n → ℝ n that has some affine component functions, using an initial matrix B0 that agrees with the Jacobian of F in the rows that correspond to affine components of F. We show that in this setting, the iterates belong to an affine subspace and can be viewed as outcome of the Broyden-like method applied to a lower-dimensional mapping $G:\mathbb {R}^{d}\rightarrow \mathbb {R}^{d}$ G : ℝ d → ℝ d , where d is the dimension of the affine subspace. We use this subspace property to make some small contributions to the decades-old question of whether the Broyden-like matrices converge: First, we observe that the only available result concerning this question cannot be applied if the iterates belong to a subspace because the required uniform linear independence does not hold. By generalizing the notion of uniform linear independence to subspaces, we can extend the available result to this setting. Second, we infer from the extended result that if at most one component of F is nonlinear while the others are affine and the associated n − 1 rows of the Jacobian of F agree with those of B0, then the Broyden-like matrices converge if the iterates converge; this holds whether the Jacobian at the root is invertible or not. In particular, this is the first time that convergence of the Broyden-like matrices is proven for n > 1, albeit for a special case only. Third, under the additional assumption that the Broyden-like method turns into Broyden’s method after a finite number of iterations, we prove that the convergence order of iterates and matrix updates is bounded from below by $\frac {\sqrt {5}+1}{2}$ 5 + 1 2 if the Jacobian at the root is invertible. If the nonlinear component of F is actually affine, we show finite convergence. We provide high-precision numerical experiments to confirm the results.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Víctor Hernández-Santamaría ◽  
Alberto Saldaña

Abstract We study existence and convergence properties of least-energy symmetric solutions (l.e.s.s.) to the pure critical exponent problem ( - Δ ) s ⁢ u s = | u s | 2 s ⋆ - 2 ⁢ u s , u s ∈ D 0 s ⁢ ( Ω ) ,  2 s ⋆ := 2 ⁢ N N - 2 ⁢ s , (-\Delta)^{s}u_{s}=\lvert u_{s}\rvert^{2_{s}^{\star}-2}u_{s},\quad u_{s}\in D^% {s}_{0}(\Omega),\,2^{\star}_{s}:=\frac{2N}{N-2s}, where s is any positive number, Ω is either ℝ N {\mathbb{R}^{N}} or a smooth symmetric bounded domain, and D 0 s ⁢ ( Ω ) {D^{s}_{0}(\Omega)} is the homogeneous Sobolev space. Depending on the kind of symmetry considered, solutions can be sign-changing. We show that, up to a subsequence, a l.e.s.s. u s {u_{s}} converges to a l.e.s.s. u t {u_{t}} as s goes to any t > 0 {t>0} . In bounded domains, this convergence can be characterized in terms of an homogeneous fractional norm of order t - ε {t-\varepsilon} . A similar characterization is no longer possible in unbounded domains due to scaling invariance and an incompatibility with the functional spaces; to circumvent these difficulties, we use a suitable rescaling and characterize the convergence via cut-off functions. If t is an integer, then these results describe in a precise way the nonlocal-to-local transition. Finally, we also include a nonexistence result of nontrivial nonnegative solutions in a ball for any s > 1 {s>1} .


Sign in / Sign up

Export Citation Format

Share Document