scholarly journals Existence and Convergence of Solutions to Fractional Pure Critical Exponent Problems

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Víctor Hernández-Santamaría ◽  
Alberto Saldaña

Abstract We study existence and convergence properties of least-energy symmetric solutions (l.e.s.s.) to the pure critical exponent problem ( - Δ ) s ⁢ u s = | u s | 2 s ⋆ - 2 ⁢ u s , u s ∈ D 0 s ⁢ ( Ω ) ,  2 s ⋆ := 2 ⁢ N N - 2 ⁢ s , (-\Delta)^{s}u_{s}=\lvert u_{s}\rvert^{2_{s}^{\star}-2}u_{s},\quad u_{s}\in D^% {s}_{0}(\Omega),\,2^{\star}_{s}:=\frac{2N}{N-2s}, where s is any positive number, Ω is either ℝ N {\mathbb{R}^{N}} or a smooth symmetric bounded domain, and D 0 s ⁢ ( Ω ) {D^{s}_{0}(\Omega)} is the homogeneous Sobolev space. Depending on the kind of symmetry considered, solutions can be sign-changing. We show that, up to a subsequence, a l.e.s.s. u s {u_{s}} converges to a l.e.s.s. u t {u_{t}} as s goes to any t > 0 {t>0} . In bounded domains, this convergence can be characterized in terms of an homogeneous fractional norm of order t - ε {t-\varepsilon} . A similar characterization is no longer possible in unbounded domains due to scaling invariance and an incompatibility with the functional spaces; to circumvent these difficulties, we use a suitable rescaling and characterize the convergence via cut-off functions. If t is an integer, then these results describe in a precise way the nonlocal-to-local transition. Finally, we also include a nonexistence result of nontrivial nonnegative solutions in a ball for any s > 1 {s>1} .

2017 ◽  
Vol 17 (4) ◽  
pp. 641-659
Author(s):  
Zhenyu Guo ◽  
Kanishka Perera ◽  
Wenming Zou

AbstractWe consider the critical p-Laplacian system\left\{\begin{aligned} &\displaystyle{-}\Delta_{p}u-\frac{\lambda a}{p}\lvert u% \rvert^{a-2}u\lvert v\rvert^{b}=\mu_{1}\lvert u\rvert^{p^{\ast}-2}u+\frac{% \alpha\gamma}{p^{\ast}}\lvert u\rvert^{\alpha-2}u\lvert v\rvert^{\beta},&&% \displaystyle x\in\Omega,\\ &\displaystyle{-}\Delta_{p}v-\frac{\lambda b}{p}\lvert u\rvert^{a}\lvert v% \rvert^{b-2}v=\mu_{2}\lvert v\rvert^{p^{\ast}-2}v+\frac{\beta\gamma}{p^{\ast}}% \lvert u\rvert^{\alpha}\lvert v\rvert^{\beta-2}v,&&\displaystyle x\in\Omega,\\ &\displaystyle u,v\text{ in }D_{0}^{1,p}(\Omega),\end{aligned}\right.where {\Delta_{p}u:=\operatorname{div}(\lvert\nabla u\rvert^{p-2}\nabla u)} is the p-Laplacian operator defined onD^{1,p}(\mathbb{R}^{N}):=\bigl{\{}u\in L^{p^{\ast}}(\mathbb{R}^{N}):\lvert% \nabla u\rvert\in L^{p}(\mathbb{R}^{N})\bigr{\}},endowed with the norm {{\lVert u\rVert_{D^{1,p}}:=(\int_{\mathbb{R}^{N}}\lvert\nabla u\rvert^{p}\,dx% )^{\frac{1}{p}}}}, {N\geq 3}, {1<p<N}, {\lambda,\mu_{1},\mu_{2}\geq 0}, {\gamma\neq 0}, {a,b,\alpha,\beta>1} satisfy {a+b=p}, {\alpha+\beta=p^{\ast}:=\frac{Np}{N-p}}, the critical Sobolev exponent, Ω is {\mathbb{R}^{N}} or a bounded domain in {\mathbb{R}^{N}} and {D_{0}^{1,p}(\Omega)} is the closure of {C_{0}^{\infty}(\Omega)} in {D^{1,p}(\mathbb{R}^{N})}. Under suitable assumptions, we establish the existence and nonexistence of a positive least energy solution of this system. We also consider the existence and multiplicity of the nontrivial nonnegative solutions.


2003 ◽  
Vol 2003 (17) ◽  
pp. 995-1003 ◽  
Author(s):  
Marius Ghergu ◽  
Vicentiu Radulescu

We consider the one-dimensional logistic problem(rαA(|u′|)u′)′=rαp(r)f(u)on(0,∞),u(0)>0,u′(0)=0, whereαis a positive constant andAis a continuous function such that the mappingtA(|t|)is increasing on(0,∞). The framework includes the case wherefandpare continuous and positive on(0,∞),f(0)=0, andfis nondecreasing. Our first purpose is to establish a general nonexistence result for this problem. Then we consider the case of solutions that blow up at infinity and we prove several existence and nonexistence results depending on the growth ofpandA. As a consequence, we deduce that the mean curvature inequality problem on the whole space does not have nonnegative solutions, excepting the trivial one.


2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
Ling Zhengqiu ◽  
Wang Zejia

This paper investigates the blow-up and global existence of nonnegative solutions for a class of nonlocal degenerate parabolic system. By using the super- and subsolution techniques, the critical exponent of the system is determined. That is, ifPc=p1q1−(m−p2)(n−q2)<0, then every nonnegative solution is global, whereas ifPc>0, there are solutions that blowup and others that are global according to the size of initial valuesu0(x)andv0(x). WhenPc=0, we show that if the domain is sufficiently small, every nonnegative solution is global while if the domain large enough that is, if it contains a sufficiently large ball, there is no global solution.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Eleonora Messina ◽  
Antonia Vecchio

We consider Volterra integral equations on time scales and present our study about the long time behavior of their solutions. We provide sufficient conditions for the stability and investigate the convergence properties when the kernel of the equations vanishes at infinity.


Sign in / Sign up

Export Citation Format

Share Document