Impedance matching in magnetic-coupling-resonance wireless power transfer for small implantable devices

Author(s):  
Sota Masuda ◽  
Tetsuya Hirose ◽  
Yuki Akihara ◽  
Nobutaka Kuroki ◽  
Masahiro Numa ◽  
...  
2015 ◽  
Vol 781 ◽  
pp. 410-413 ◽  
Author(s):  
Artit Rittiplang ◽  
Wanchai Pijitrojana

Nowadays, there are more studies about the wireless power transfer (WPT) for mobile charging, electrical vehicles, implantable biomedical devices, and other applications. They (series resonance) commonly operate at high the self-resonant frequency (f0, several hundred kHz - several MHz ranges) based on magnetic coupling under impedance matching (IM). Operating at high f0 to increase the transfer distance, but high f0 (several MHz ranges) causes other parasitic losses of devices and the effectiveness to humans. In this paper, we propose a new method to design WPT using the parallel resonance under IM at low f0. The two coils are 10-turns with the radius of 6.2 cm. The efficiency (35.77 %) of the system under IM is achieved at the transfer distance of 10 cm and f0=20.388 kHz (low frequency), and the transfer distance can be increased by reducing f0.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Qiang Zhao ◽  
Anna Wang

Magnetic coupling resonant wireless power transfer network (MCRWPTN) system can realize wireless power transfer for some electrical equipment real-time and high efficiency in a certain spatial scale, which resolves the contradiction between power transfer efficiency and the power transfer distance of the wireless power transfer. A fully coupled resonant energy transfer model for multirelay coils and ports is established. A dynamic adaptive impedance matching control based on fully coupling matrix and particle swarm optimization algorithm based on annealing is developed for the MCRWPTN. Furthermore, as an example, the network which has twenty nodes is analyzed, and the best transmission coefficient which has the highest power transfer efficiency is found using the optimization algorithm, and the coupling constraints are considered simultaneously. Finally, the effectiveness of the proposed method is proved by the simulation results.


2017 ◽  
Vol 137 (4) ◽  
pp. 326-333
Author(s):  
Chiaki Nagai ◽  
Kenji Inukai ◽  
Masato Kobayashi ◽  
Tatsuya Tanaka ◽  
Kensho Abumi ◽  
...  

Author(s):  
Zhi-Juan Liao ◽  
Qi-Kai Feng ◽  
Chen-Hui Jiang ◽  
Fan Wu ◽  
Chen-Yang Xia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document