dynamic impedance
Recently Published Documents


TOTAL DOCUMENTS

185
(FIVE YEARS 41)

H-INDEX

16
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Hao Zhang ◽  
Jienan Niu ◽  
Ningning Huang ◽  
Qifang Yan

To describe the mechanical properties of the system of pipe pile-soil reasonably and accurately, the constitutive relations of the soil around pile and pile core soil are characterized by the fractional derivative viscoelastic model. We assume that the radial and circumferential displacements of the soil around the pile and pile core soil are the functions of r, θ, and z. The horizontal dynamic control equations of soil layers are derived by using the fractional derivative viscoelastic model. Considering the fractional derivative properties, soil layer boundary condition, and contact condition of pile and soil, the potential function decomposition method is used to solve the radial and circumferential displacements of the soil layer. Then, the force of unit thickness soil layer on the pipe pile and the impedance factor of the soil layer are obtained. The horizontal dynamic equations of pipe pile are established considering the effect of soil layers. The horizontal dynamic impedance and horizontal-swaying dynamic resistance at the pile top are obtained by combining the pipe pile-soil boundary conditions and the orthogonal operation of trigonometric function. Numerical solutions are used to analyze the influence of pile and soil parameters on the soil impedance factor and horizontal dynamic impedance at pile top. The results show that the horizontal impedance factors of the soil layer and horizontal dynamic impedance of pipe pile by using the fractional derivative viscoelastic model can be degraded to those of the classical viscoelastic model and the elastic model. For the fractional derivative viscoelastic model of soil layer, the influence of soil around pile on the dynamic impedance is greater than that of pile core soil. The model parameter TOa, the inner radius of pipe pile, and the pile length have obvious effects on the horizontal impedance of the soil layer and pipe pile, while the influence of the pile core soil on the pile impedance is smaller.


2021 ◽  
Author(s):  
Joseph T. Howard ◽  
Seth Thomas ◽  
James C. Gallentine ◽  
Eric J. Barth

Abstract This work proposes the theory and design of an experimental setup to mimic the dynamic impedance of the human circulatory system for testing the dynamic characteristics of an artificial heart. This platform has the same resistance, compliance, and inertance elements as the well-studied 4-element Windkessel model. As opposed to a circuit analogy model commonly seen in the literature, our platform remains within the same energy domain as the circulatory system. This allows an artificial heart designer to test pump performance and dynamic pressure characteristics under realistic loading. A test platform is designed using a non-hazardous working fluid with the same density and viscosity as blood. The system uses as few custom components as possible and interchangeable parts allow for system tuning.


Algorithms ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 247
Author(s):  
Chenyu Wang ◽  
Hong Qiao ◽  
Yi Wang ◽  
Xianting Du

The characteristics of bridge pile-group foundation have a significant influence on the dynamic performance of the superstructure. Most of the existing analysis methods for the pile-group foundation impedance take the trait of strong specialty, which cannot be generalized in practical projects. Therefore, a project-oriented numerical solution algorithm is proposed to compute the dynamic impedance of bridge pile-group foundation. Based on the theory of viscous-spring artificial boundary, the derivation and solution of the impedance function are transferred to numerical modeling and harmonic analysis, which can be carried out through the finite element method. By taking a typical pile-group foundation as a case study, the results based on the algorithm are compared with those from existing literature. Moreover, an impact experiment of a real pile-group foundation was implemented, the results of which are also compared with those resulting from the proposed numerical algorithm. Both comparisons show that the proposed numerical algorithm satisfies engineering precision, thus showing good effectiveness in application.


2021 ◽  
Author(s):  
Xiang Gao ◽  
Gang Xu ◽  
Muye Pang ◽  
Biwei Tang ◽  
Kui Xiang

2021 ◽  
Author(s):  
Gozde Unal ◽  
Jaiti K. Swami ◽  
Carliza Canela ◽  
Samantha L. Cohen ◽  
Niranjan Khadka ◽  
...  

2021 ◽  
pp. 107078
Author(s):  
K. Darowicki ◽  
A. Zielinski ◽  
M. Mielniczek ◽  
E. Janicka ◽  
L. Gawel

Sign in / Sign up

Export Citation Format

Share Document