implantable biomedical devices
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 26)

H-INDEX

15
(FIVE YEARS 4)

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8464
Author(s):  
Hyeonkeon Lee ◽  
Jongheon Lee ◽  
Honghyeon Park ◽  
Mi Song Nam ◽  
Yun Jung Heo ◽  
...  

We propose a biomedical sensor system for continuous monitoring of glucose concentration. Despite recent advances in implantable biomedical devices, mm sized devices have yet to be developed due to the power limitation of the device in a tissue. We here present a mm sized wireless system with backscattered frequency-modulation communication that enables a low-power operation to read the glucose level from a fluorescent hydrogel sensor. The configuration of the reader structure is optimized for an efficient wireless power transfer and data communication, miniaturizing the entire implantable device to 3 × 6 mm 2 size. The operation distance between the reader and the implantable device reaches 2 mm with a transmission power of 33 dBm. We demonstrate that the frequency of backscattered signals changes according to the light intensity of the fluorescent glucose sensor. We envision that the present wireless interface can be applied to other fluorescence-based biosensors to make them highly comfortable, biocompatible, and stable within a body.


2021 ◽  
Vol 11 (12) ◽  
pp. 3153-3163
Author(s):  
T. Arulkumar ◽  
N. Chandrasekaran

Implantable biomedical systems that enable the majority of the functions of wireless implantable devices have made significant progress in recent years. Nonetheless, due to limited miniaturization, power distribution limits, and the unavailability of a stable link between implants and external devices, such systems are primarily limited to investigation. Generating electricity from natural sources and human body movement for implantable biomedical devices has emerged as a viable option. Nowadays, energy sources become the emerging use of electricity grid which has formed new challenges for the effectiveness of power quality, efficient energy utilization and voltage stabilization for biomedical applications. Power quality in the implementation of the smart grid in biomedical devices is regarded to be the most problematic. APFs (Active Power Filter) are preferred to reward the related problems, mainly because they can quickly filter out of the PQ and are a dynamic compensation. The UPQC with a PI control unit with DC source to be converted to a three stage inverter based on Enhanced Whale Optimization Algorithm (EWOA) was precisely implemented in the article in order to eliminate voltage and current harmonics inadequate. Similarly, UPQC also used the Enhanced Whale Optimization Algorithm (EWOA). In this approach, UPQC along with EWOA (Enhanced whale optimization) has been introduced for voltage and current harmonics elimination defect specifically. Similarly, EWOA was too implemented with UPQC. UPQC & EWOA conducted a performance estimate by estimating a simulation, results on comparing the parameters of THD levels, load current and voltage. The performance estimate is also used and the results achieved are shown. In order to analyze THD values and validate the system performance, performance estimates are built and compared with THD values, load voltage and current parameters.


Author(s):  
Muath Al-Hasan ◽  
Penchala Reddy Sura ◽  
Amjad Iqbal ◽  
Jun Jiat Tiang ◽  
Ismail Ben Mabrouk ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2096
Author(s):  
Agnieszka Sobczak-Kupiec ◽  
Anna Drabczyk ◽  
Wioletta Florkiewicz ◽  
Magdalena Głąb ◽  
Sonia Kudłacik-Kramarczyk ◽  
...  

Regenerative medicine is becoming a rapidly evolving technique in today’s biomedical progress scenario. Scientists around the world suggest the use of naturally synthesized biomaterials to repair and heal damaged cells. Hydroxyapatite (HAp) has the potential to replace drugs in biomedical engineering and regenerative drugs. HAp is easily biodegradable, biocompatible, and correlated with macromolecules, which facilitates their incorporation into inorganic materials. This review article provides extensive knowledge on HAp and collagen-containing compositions modified with drugs, bioactive components, metals, and selected nanoparticles. Such compositions consisting of HAp and collagen modified with various additives are used in a variety of biomedical applications such as bone tissue engineering, vascular transplantation, cartilage, and other implantable biomedical devices.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 447
Author(s):  
Hey In Jeong ◽  
Dae Hyeok An ◽  
Jun Woo Lim ◽  
Taehoon Oh ◽  
Hojin Lee ◽  
...  

To use implantable biomedical devices such as electrocardiograms and neurostimulators in the human body, it is necessary to package them with biocompatible materials that protect the internal electronic circuits from the body’s internal electrolytes and moisture without causing foreign body reactions. Herein, we describe a hydrogel surface-modified polyurethane copolymer film with concurrent water permeation resistance and biocompatibility properties for application to an implantable biomedical device. To achieve this, hydrophobic polyurethane copolymers comprising hydrogenated poly(ethylene-co-butylene) (HPEB) and aliphatic poly(carbonate) (PC) were synthesized and their hydrophobicity degree and mechanical properties were adjusted by controlling the copolymer composition ratio. When 10 wt% PC was introduced, the polyurethane copolymer exhibited hydrophobicity and water permeation resistance similar to those of HPEB; however, with improved mechanical properties. Subsequently, a hydrophilic poly(vinyl pyrrolidone) (PVP) hydrogel layer was formed on the surface of the polyurethane copolymer film by Fenton reaction using an initiator and crosslinking agent and the effect of the initiator and crosslinking agent immobilization time, PVP concentration and crosslinking agent concentration on the hydrogel properties were investigated. Finally, MTT assay showed that the hydrogel surface-modified polyurethane copolymer film displays excellent biocompatibility.


Sign in / Sign up

Export Citation Format

Share Document