Wireless Power Supply System for Left Ventricular Assist Device and Implanted Cardiac Defibrillator

Author(s):  
T. Campi ◽  
S. Cruciani ◽  
F. Maradei ◽  
M. Feliziani
Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 874
Author(s):  
Tommaso Campi ◽  
Silvano Cruciani ◽  
Francesca Maradei ◽  
Mauro Feliziani

This study deals with the design of a near-field wireless power transfer (WPT) system applied to a left ventricular assist device (LVAD) to treat patients with heart-failure problems. An LVAD is an implanted electrically driven pump connected to the heart and is traditionally powered by batteries external to the human body via a percutaneous driveline cable. The main challenge of wirelessly powering an LVAD implanted deep in the human body is to transfer relatively high power with high efficiency levels. Here the optimal design of the primary and secondary WPT coils is proposed to improve the performance of the WPT, avoiding possible safety problems of electromagnetic fields (EMF). As a main result, an average power of 5 W is continuously delivered to the LVAD by the WPT system working at 6.78 MHz with a total (DC–to–DC) efficiency of approximately 65% for the worst-case configuration.


Author(s):  
J P Cassella ◽  
V Salih ◽  
T R Graham

Left ventricular assist systems are being developed for eventual long term or permanent implantation as an alternative to heart transplantation in patients unsuitable for or denied the transplant option. Evaluation of the effects of these devices upon normal physiology is required. A preliminary study was conducted to evaluate the morphology of aortic tissue from calves implanted with a pneumatic Left Ventricular Assist device-LVAD. Two 3 month old heifer calves (calf 1 and calf 2) were electively explanted after 128 days and 47 days respectively. Descending thoracic aortic tissue from both animals was removed immediately post mortem and placed into karnovsky’s fixative. The tissue was subsequently processed for transmission electron microscopy (TEM). Some aortic tissue was fixed in neutral buffered formalin and processed for routine light microscopy.


Sign in / Sign up

Export Citation Format

Share Document