Journal of Low Power Electronics
Latest Publications


TOTAL DOCUMENTS

771
(FIVE YEARS 0)

H-INDEX

16
(FIVE YEARS 0)

Published By American Scientific Publishers

1546-1998

2019 ◽  
Vol 15 (4) ◽  
pp. 329-337
Author(s):  
Juan P. Oliver ◽  
Federico Favaro ◽  
Eduardo Boemo

In this paper, an extensive review of the available publications about comparing estimations versus measurements of power consumption in FPGA technology is carried out. This study reveals that the variety of experimental setups makes it difficult to elaborate solid studies departing from the results of different researchers using meta-analysis techniques. To mitigate this problem, we propose a procedure to standardize the setup of FPGA power estimation experiments. The goal is to make as close as possible power estimations and their corresponding actual on-chip measurements. The main idea is to use a fixed arrangement composed by a parameterized pattern generator block at the input, together with a set of interchangeable IP cores utilized as reference circuits. All the blocks are mapped together inside the FPGA sample, being the clock and reset lines the sole input signals. Thus, both power estimation and actual measurements are performed to the whole system in identical conditions. In order to illustrate the method, the paper includes some examples of the proposed methodology for different cores. A set of 25 circuits have been tested in two FPGA families, obtaining relative errors in power estimation between –61.5% and 9.2%.


2019 ◽  
Vol 15 (4) ◽  
pp. 351-360
Author(s):  
Armande Capitaine ◽  
Gael Pillonnet ◽  
Bruno Allard

Benthic microbial fuel cells (MFCs) are promising alternatives to conventional batteries for powering underwater low-power sensors. Regarding performances (10's μW at 100's mV for cm 2-scale electrodes), an electrical interface is required to maximize the harvested energy and boost the voltage. Because the MFCs electrical behavior fluctuates, it is common to refer to maximum power point tracking (MPPT). Using a sub-mW flyback converter, this paper compares the benefit of different MPPT strategies: either by maximizing the energy at the converter input or at the converter output, or by fixing the MFC operating point at its nominal maximum power point. A practical flyback has been validated and experimentally tested for these MPPT options showing a gain in efficiency in certain configurations. The results allow determining a power budget for MPPT controllers that should not exceed this gain. Eventually, considering typical MFC fluctuations, avoiding any MPPT controller by fixing the converter operating parameters may offer better performances for sub-mW harvesters.


2019 ◽  
Vol 15 (4) ◽  
pp. 368-378 ◽  
Author(s):  
Mounira Bchir ◽  
Thouraya Ettaghzouti ◽  
Néjib Hassen

This paper introduces a novel structure for the realization of a low voltage, low power current-mode analog to the digital converter (ADC) pipeline (12 bits). The proposed structure of the ADC is based on a novel design of a current comparator and Digital to Analog Converter (DAC) structure. This modification allows us to reach a higher speed, lower voltage, and lower power dissipation. ELDO simulators using 0.18 μm, CMOS and TSMC parameters are performed to confirm the workability of this architecture. The proposed ADC is powered with a 1 V supply voltage. It is characterized by wide conversion frequency (350 MHz) and low power consumption that is 2.76 mW.


2019 ◽  
Vol 15 (4) ◽  
pp. 361-367 ◽  
Author(s):  
Simone Becchetti ◽  
Anna Richelli ◽  
Luigi Colalongo ◽  
Zsolt M. Kovacs-Vajna

In this paper the CMOS amplifier behaviour has been further investigated respect to the previous works in the literature. An exhaustive scenario for the EMI pollution has been considered: the injected interferences can indeed directly reach the amplifier pins or can be coupled from the PCB ground. This is a key point for evaluating also the susceptibility from the EMI coupled to the output pin, which is disclosed as a critical point. The investigated topologies are basically derived from the Miller and the Folded Cascode, which are well-known and widely used by the CMOS analog designers; all of them are re-designed in UMC 180 nm CMOS process in order to have a fair comparison.


2019 ◽  
Vol 15 (4) ◽  
pp. 379-387
Author(s):  
Tayebeh Asiyabi ◽  
Jafar Torfifard

In this paper, a new architecture of four-stage CMOS operational transconductance amplifier (OTA) based on an alternative differential AC boosting compensation called DACBC is proposed. The presented structure removes feedforward and boosts feedback paths of compensation network simultaneously. Moreover, the presented circuit uses a fairly small compensation capacitor in the order of 1 pF, which makes the circuit very compact regarding enhanced several small-signal and largesignal characteristics. The proposed circuit along with several state-of-the-art schemes from the literature have been extensively analysed and compared together. The simulation results show with the same capacitive load and power dissipation the unity-gain frequency (UGF) can be improved over 60 times than conventional nested Miller compensation. The results of the presented OTA with 15 pF capacitive load demonstrated 65° phase margin, 18.88 MHz as UGF and DC gain of 115 dB with power dissipation of 462 μW from 1.8 V.


2019 ◽  
Vol 15 (4) ◽  
pp. 338-350
Author(s):  
Giuseppe Visalli

In this work, we propose an approximate and energy-efficient CORDIC method, based on a trigonometric function spatial locality principle derived from benchmarks profiling. Successive sine/cosine computation requests cover more than 50% when the absolute phase difference is at most ten degrees. Consequently, this property suggests an optimized circuit implementation, both iterative or a succession of microrotation modules, where the last CORDIC requires fewer iterations, reducing the latency and the total energy budget at the same precision of two separate and independent instances. Thus, this simple design strategy allows significant area and energy dissipation in general-purpose VLSI architectures, but it introduces also dramatically optimizations in applicationspecific embedded systems used in the area of signal processing and radio frequency communication. In this contribution, we introduce a method, the hardware overhead and the energy budget per single cycle. Simulation results show the total energy saving in considered benchmarks is 40% in pipelined and iterative general purposes CORDIC. Furthermore, our application-specific systems (fast Fourier transform and digital oscillators for radiofrequency down conversions) show remarkable cycle savings when the successive sine/cosine computation requests are more than 70%. Finally, in this work, we extend the proposed approach to whichever phase difference less than 26.56° , as a variable for the second CORDIC number of angle rotations.


2019 ◽  
Vol 15 (4) ◽  
pp. 388-409
Author(s):  
Xiuyan Zhang ◽  
Ouwen Shi ◽  
Jian Xu ◽  
Shantanu Dutt

We present a power-driven hierarchical framework for module/functional-unit selection, scheduling, and binding in high level synthesis. A significant aspect of algorithm design for large and complex problems is arriving at tradeoffs between quality of solution and timing complexity. Towards this end, we integrate an improved version of the very runtime-efficient list scheduling algorithm called modified list scheduling (MLS) with a power-driven simulated annealing (SA) algorithm for module selection. Our hierarchical framework efficiently explores the problem solution space by an extensive exploration of the power-driven module-selection solution space via SA, and for each module selection solution, uses MLS to obtain a scheduling and (integrated) binding (S&B) solution in which the binding is either a regular one (minimizing number of FUs and thus FU leakage power) or power-driven with mux/demux power considerations. This framework avoids the very runtime intensive exploration of both module selection and S&B within a conventional SA algorithm, but retains the basic prowess of SA by exploring only the important aspect of power-driven module-selection in a stochastic manner. The proposed hierarchical framework provides an average of 9.5% FU leakage power improvement over state of the art (approximate) algorithms that optimize only FU leakage power, and has a smaller runtime by factors of 2.5–3x. Further, compared to a sophisticated flat simulated annealing framework and an optimal 0/1-ILP formulation for total (dynamic and leakage) FU and architecture power optimization under latency constraints, PSA-MLS provides an improvement of 5.3–5.8% with a runtime advantage of 2x, and has an average optimality gap of only 4.7–4.8% with a significant runtime advantage of a factor of more than 1900, respectively.


2019 ◽  
Vol 15 (3) ◽  
pp. 294-301
Author(s):  
Minh-Huan Vo

In a finite state machine (FSM), there is only one active state while the other states are in idle states simultaneously. Thus, only one state is required to power up, the other states can be switched off to save active power. Normally, a backward traversing algorithm is used to label the power gating cells and extract the enable signals for combinational logic gates in reducing the active power consumption. This conventional power gating technique uses the extracted enable signals to turn ON/OFF these inserted NMOS switches. Then, a power management unit is required to manage these enable signals and detect the idle periods. The proposed self-power saving technique uses internally generated enable signals from state transitions to control NMOS switches inserted under the ground rail of each state. All internal enable signals are created to activate/deactivate the machine states at the same time. Based on the next state of the FSM, a decoder creates the enable signals for each state to do power gating in an Automatic Teller Machine (ATM) application. The isolation cell is designed to isolate the current state and next state for retaining data. Simulation results show the power saving from 31.99% at a WAIT state to 82.87% at a LOCK state, depending on the current state of the finite state machine. On average, the power loss is saved up to 63.2% in the FSM. An overhead area is about 12% compared to the conventional technique while timing overhead is under 5%.


2019 ◽  
Vol 15 (3) ◽  
pp. 283-293 ◽  
Author(s):  
Yohann Rioual ◽  
Johann Laurent ◽  
Jean-Philippe Diguet

IoT and autonomous systems are in charge of an increasing number of sensing, processing and communications tasks. These systems may be equipped with energy harvesting devices. Nevertheless, the energy harvested is uncertain and variable, which makes it difficult to manage the energy in these systems. Reinforcement learning algorithms can handle such uncertainties, however selecting the adapted algorithm is a difficult problem. Many algorithms are available and each has its own advantages and drawbacks. In this paper, we try to provide an overview of different approaches to help designer to determine the most appropriate algorithm according to its application and system. We focus on Q-learning, a popular reinforcement learning algorithm and several of these variants. The approach of Q-learning is based on the use of look up table, however some algorithms use a neural network approach. We compare different variants of Q-learning for the energy management of a sensor node. We show that depending on the desired performance and the constraints inherent in the application of the node, the appropriate approach changes.


2019 ◽  
Vol 15 (3) ◽  
pp. 302-308
Author(s):  
Ganesh Kumar Ganjikunta ◽  
Sibghatullah I. Khan ◽  
M. Mahaboob Basha

A high speed N × N bit multiplier architecture that supports signed and unsigned multiplication operations is proposed in this paper. This architecture incorporates the modified two's complement circuits and also N × N bit unsigned multiplier circuit. This unsigned multiplier circuit is based on decomposing the multiplier circuit into smaller-precision independent multipliers using Vedic Mathematics. These individual multipliers generate the partial products in parallel for high speed operation, which are combined by using high speed adders and parallel adder to generate the product output. The proposed architecture has regular-shape for the partial product tree that makes easy to implement. Finally, this multiplier architecture is implemented in UMC 65 nm technology for N = 8, 16 and 32 bits. The synthesis results shows that the proposed multiplier architecture improves in terms of speed and also reduces power-delay product (PDP), compared to the architectures in the literature.


Sign in / Sign up

Export Citation Format

Share Document