Displacement prediction model of landslide based on multi-gene genetic programming

Author(s):  
Jiejie Chen ◽  
Zhigang Zeng ◽  
Ping Jiang
2007 ◽  
Vol 18 (03) ◽  
pp. 369-374 ◽  
Author(s):  
AMR RADI

It is difficult to predict the dynamics of systems which are nonlinear and whose characteristic is unknown. In order to build a model of the system from input and output data without any knowledge about the system, we try automatically to build prediction model by Genetic Programming (GP). GP has been used to discover the function that describes nonlinear system to study the effect of wavelength and temperature on the refractive index of the fiber core. The predicted distribution from the GP based model is compared with the experimental data. The discovered function of the GP model has proved to be an excellent match to the experimental data.


Author(s):  
Qiang Song ◽  
Junjian Zhang ◽  
Wei Zhang ◽  
Yunsheng Liu ◽  
Xianli Cui

2021 ◽  
Vol 11 (22) ◽  
pp. 11030
Author(s):  
Chenhui Wang ◽  
Yijiu Zhao ◽  
Libing Bai ◽  
Wei Guo ◽  
Qingjia Meng

The deformation process of landslide displacement has complex nonlinear characteristics. In view of the problems of large error, slow convergence and poor stability of the traditional neural network prediction model, in order to better realize the accurate and effective prediction of landslide displacement, this research proposes a landslide displacement prediction model based on Genetic Algorithm (GA) optimized Elman neural network. This model combines the GA with the Elman neural network to optimize the weights, thresholds and the number of hidden neurons of the Elman neural network. It gives full play to the dynamic memory function of the Elman neural network, overcomes the problems that a single Elman neural network can easily fall into local minimums and the neuron data is difficult to determine, thereby effectively improving the prediction performance of the neural network prediction model. The displacement monitoring data of a slow-varying landslide in the Guizhou karst mountainous area are selected to predict and verify the landslide displacement, and the results are compared with the traditional Elman neural network prediction results. The results show that the prediction results of GA-Elman model are in good agreement with the actual monitoring data of landslide. The average error of the model is low and the prediction accuracy is high, which proves that the GA-Elman model can play a role in the prediction of landslide displacement and can provide reference for the early warning of landslide displacement deformation.


Sign in / Sign up

Export Citation Format

Share Document