scholarly journals Analysis of crystal structures of aspartic proteinases: On the role of amino acid residues adjacent to the catalytic site of pepsin-like enzymes

2001 ◽  
Vol 10 (12) ◽  
pp. 2439-2450 ◽  
Author(s):  
N. S. Andreeva
2015 ◽  
Vol 108 (2) ◽  
pp. 162a
Author(s):  
Yoshihiro Minagawa ◽  
Ueno Hiroshi ◽  
Mayu Hara ◽  
Hiroyuki Noji ◽  
Takeshi Murata ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 715
Author(s):  
Tamara Tomanić ◽  
Claire Martin ◽  
Holly Stefen ◽  
Esmeralda Parić ◽  
Peter Gunning ◽  
...  

Tropomyosins (Tpms) have been described as master regulators of actin, with Tpm3 products shown to be involved in early developmental processes, and the Tpm3 isoform Tpm3.1 controlling changes in the size of neuronal growth cones and neurite growth. Here, we used primary mouse hippocampal neurons of C57/Bl6 wild type and Bl6Tpm3flox transgenic mice to carry out morphometric analyses in response to the absence of Tpm3 products, as well as to investigate the effect of C-terminal truncation on the ability of Tpm3.1 to modulate neuronal morphogenesis. We found that the knock-out of Tpm3 leads to decreased neurite length and complexity, and that the deletion of two amino acid residues at the C-terminus of Tpm3.1 leads to more detrimental changes in neurite morphology than the deletion of six amino acid residues. We also found that Tpm3.1 that lacks the 6 C-terminal amino acid residues does not associate with stress fibres, does not segregate to the tips of neurites, and does not impact the amount of the filamentous actin pool at the axonal growth cones, as opposed to Tpm3.1, which lacks the two C-terminal amino acid residues. Our study provides further insight into the role of both Tpm3 products and the C-terminus of Tpm3.1, and it forms the basis for future studies that aim to identify the molecular mechanisms underlying Tpm3.1 targeting to different subcellular compartments.


2020 ◽  
Author(s):  
Kangle Niu ◽  
Zhengyao Liu ◽  
Yuhui Feng ◽  
Tianlong Gao ◽  
Zhenzhen Wang ◽  
...  

<p>Oligosaccharides have important therapeutic applications. A useful route for oligosaccharides synthesis, especially rare disaccharides, is reverse hydrolysis by <i>β</i>-glucosidase. However, the low conversion efficiency of disaccharides from monosaccharides limits its large-scale production because the equilibrium is biased in the direction of hydrolysis. Based on the analysis of the docking results, we hypothesized that the hydropathy index of key amino acid residues in the catalytic site is closely related with disaccharide synthesis and more hydrophilic residues located in the catalytic site would enhance reverse hydrolysis activity. In this study, positive variants<i> Tr</i>Cel1b<sup>I177S</sup>, <i>Tr</i>Cel1b<sup>I177S/I174S</sup>, and <i>Tr</i>Cel1b<sup>I177S/I174S/W173H</sup>, and one negative variant <i>Tr</i>Cel1b<sup>N240I</sup> were designed according to the <u>H</u>ydropathy <u>I</u>ndex <u>F</u>or <u>E</u>nzyme <u>A</u>ctivity (HIFEA) strategy. The reverse hydrolysis with <i>Tr</i>Cel1b<sup>I177S/I174S/W173H </sup>was accelerated and then the maximum total production (<a>195.8 mg/ml/mg enzyme</a>) of the synthesized disaccharides was increased 3.5-fold compared to that of wildtype. On the contrary, <a><i>Tr</i>Cel1b</a><sup>N240I</sup> lost reverse hydrolysis activity. The results demonstrate that<a> </a><a>the average hydropathy index</a> of <a>the key amino acid residues </a>in the catalytic site of<i> Tr</i>Cel1b is an important factor for the synthesis of laminaribiose, sophorose, and cellobiose. The HIFEA strategy provides a new perspective for the rational design of <i>β</i>-glucosidases used for the synthesis of oligosaccharides.</p>


2015 ◽  
Vol 39 (5) ◽  
pp. 3319-3326 ◽  
Author(s):  
Madhusudana M. B. Reddy ◽  
K. Basuroy ◽  
S. Chandrappa ◽  
B. Dinesh ◽  
B. Vasantha ◽  
...  

γn amino acid residues can be incorporated into structures in γn and hybrid sequences containing folded and extended α and δ residues.


Sign in / Sign up

Export Citation Format

Share Document