hydropathy index
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 7)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 11 ◽  
Author(s):  
Arancha Rodríguez-Caballero ◽  
Blanca Fuentes Herrero ◽  
Guillermo Oliva Ariza ◽  
Ignacio Criado ◽  
Miguel Alcoceba ◽  
...  

The HCDR3 sequences of the B-cell receptor (BCR) undergo constraints in length, amino acid use, and charge during maturation of B-cell precursors and after antigen encounter, leading to BCR and antibodies with high affinity to specific antigens. Chronic lymphocytic leukemia consists of an expansion of B-cells with a mixed immature and “antigen-experienced” phenotype, with either a mutated (M-CLL) or unmutated (U-CLL) tumor BCR, associated with distinct patient outcomes. Here, we investigated the hydropathy index of the BCR of 138 CLL patients and its association with the IGHV mutational status and patient outcome. Overall, two clearly distinct subgroups of M-CLL patients emerged, based on a neutral (mean hydropathy index of -0.1) vs. negatively charged BCR (mean hydropathy index of -1.1) with molecular features closer to those of B-cell precursors and peripheral/mature B-cells, respectively. Despite that M-CLL with neutral HCDR3 did not show traits associated with a mature B-cell repertoire, important differences in IGHV gene usage of tumor cells and patient outcome were observed in this subgroup of patients once compared to both U-CLL and M-CLL with negatively charged HCDR3 sequences. Compared to M-CLL with negatively charged HCDR3 sequences, M-CLL with neutral HCDR3 sequences showed predominance of men, more advanced stages of the disease, and a greater frequency of genetic alterations—e.g., del(17p)—together with a higher rate of disease progression and shorter time to therapy (TTT), independently of other prognostic factors. Our data suggest that the hydropathy index of the HCDR3 sequences of CLL cells allows the identification of a subgroup of M-CLL with intermediate prognostic features between U-CLL and the more favorable subgroup of M-CLL with a negatively charged BCR.


Author(s):  
Hrushikesh Bhosale ◽  
Vigneshwar Ramakrishnan ◽  
Valadi K. Jayaraman

Bacterial virulence can be attributed to a wide variety of factors including toxins that harm the host. Pore-forming toxins are one class of toxins that confer virulence to the bacteria and are one of the promising targets for therapeutic intervention. In this work, we develop a sequence-based machine learning framework for the prediction of pore-forming toxins. For this, we have used distributed representation of the protein sequence encoded by reduced alphabet schemes based on conformational similarity and hydropathy index as input features to Support Vector Machines (SVMs). The choice of conformational similarity and hydropathy indices is based on the functional mechanism of pore-forming toxins. Our methodology achieves about 81% accuracy indicating that conformational similarity, an indicator of the flexibility of amino acids, along with hydrophobic index can capture the intrinsic features of pore-forming toxins that distinguish it from other types of transporter proteins. Increased understanding of the mechanisms of pore-forming toxins can further contribute to the use of such “mechanism-informed” features that may increase the prediction accuracy further.


2020 ◽  
Author(s):  
Kangle Niu ◽  
Zhengyao Liu ◽  
Yuhui Feng ◽  
Tianlong Gao ◽  
Zhenzhen Wang ◽  
...  

Abstract Oligosaccharides have important therapeutic applications. A useful route for oligosaccharides synthesis is reverse hydrolysis by β-glucosidase. However, the low conversion efficiency of disaccharides from monosaccharides limits its large-scale production because the equilibrium is biased in the direction of hydrolysis. Based on the analysis of the docking results, we hypothesized that the hydropathy index of key amino acid residues in the catalytic site is closely related with disaccharide synthesis and more hydrophilic residues located in the catalytic site would enhance reverse hydrolysis activity. In this study, positive variants TrCel1bI177S, TrCel1bI177S/I174S, and TrCel1bI177S/I174S/W173H, and one negative variant TrCel1bN240I were designed according to the Hydropathy Index For Enzyme Activity (HIFEA) strategy. The reverse hydrolysis with TrCel1bI177S/I174S/W173H was accelerated and then the maximum total production (195.8 mg/mL/mg enzyme) of the synthesized disaccharides was increased by 3.5-fold compared to that of wildtype. On the contrary, TrCel1bN240I lost reverse hydrolysis activity. The results demonstrate that the average hydropathy index of the key amino acid residues in the catalytic site of TrCel1b is an important factor for the synthesis of laminaribiose, sophorose, and cellobiose. The HIFEA strategy provides a new perspective for the rational design of β-glucosidases used for the synthesis of oligosaccharides.


2020 ◽  
Author(s):  
Kangle Niu ◽  
Zhengyao Liu ◽  
Yuhui Feng ◽  
Tianlong Gao ◽  
Zhenzhen Wang ◽  
...  

Abstract Oligosaccharides have important therapeutic applications. A useful route for oligosaccharides synthesis is reverse hydrolysis by β-glucosidase. However, the low conversion efficiency of disaccharides from monosaccharides limits its large-scale production because the equilibrium is biased in the direction of hydrolysis. Based on the analysis of the docking results, we hypothesized that the hydropathy index of key amino acid residues in the catalytic site is closely related with disaccharide synthesis and more hydrophilic residues located in the catalytic site would enhance reverse hydrolysis activity. In this study, positive variants TrCel1bI177S, TrCel1bI177S/I174S, and TrCel1bI177S/I174S/W173H, and one negative variant TrCel1bN240I were designed according to the Hydropathy Index For Enzyme Activity (HIFEA) strategy. The reverse hydrolysis with TrCel1bI177S/I174S/W173H was accelerated and then the maximum total production (195.8 mg/ml/mg enzyme) of the synthesized disaccharides was increased 3.5-fold compared to that of wildtype. On the contrary, TrCel1bN240I lost reverse hydrolysis activity. The results demonstrate that the average hydropathy index of the key amino acid residues in the catalytic site of TrCel1b is an important factor for the synthesis of laminaribiose, sophorose, and cellobiose. The HIFEA strategy provides a new perspective for the rational design of β-glucosidases used for the synthesis of oligosaccharides.


2020 ◽  
Author(s):  
Kangle Niu ◽  
Zhengyao Liu ◽  
Yuhui Feng ◽  
Tianlong Gao ◽  
Zhenzhen Wang ◽  
...  

<p>Oligosaccharides have important therapeutic applications. A useful route for oligosaccharides synthesis, especially rare disaccharides, is reverse hydrolysis by <i>β</i>-glucosidase. However, the low conversion efficiency of disaccharides from monosaccharides limits its large-scale production because the equilibrium is biased in the direction of hydrolysis. Based on the analysis of the docking results, we hypothesized that the hydropathy index of key amino acid residues in the catalytic site is closely related with disaccharide synthesis and more hydrophilic residues located in the catalytic site would enhance reverse hydrolysis activity. In this study, positive variants<i> Tr</i>Cel1b<sup>I177S</sup>, <i>Tr</i>Cel1b<sup>I177S/I174S</sup>, and <i>Tr</i>Cel1b<sup>I177S/I174S/W173H</sup>, and one negative variant <i>Tr</i>Cel1b<sup>N240I</sup> were designed according to the <u>H</u>ydropathy <u>I</u>ndex <u>F</u>or <u>E</u>nzyme <u>A</u>ctivity (HIFEA) strategy. The reverse hydrolysis with <i>Tr</i>Cel1b<sup>I177S/I174S/W173H </sup>was accelerated and then the maximum total production (<a>195.8 mg/ml/mg enzyme</a>) of the synthesized disaccharides was increased 3.5-fold compared to that of wildtype. On the contrary, <a><i>Tr</i>Cel1b</a><sup>N240I</sup> lost reverse hydrolysis activity. The results demonstrate that<a> </a><a>the average hydropathy index</a> of <a>the key amino acid residues </a>in the catalytic site of<i> Tr</i>Cel1b is an important factor for the synthesis of laminaribiose, sophorose, and cellobiose. The HIFEA strategy provides a new perspective for the rational design of <i>β</i>-glucosidases used for the synthesis of oligosaccharides.</p>


2020 ◽  
Author(s):  
Kangle Niu ◽  
Zhengyao Liu ◽  
Yuhui Feng ◽  
Tianlong Gao ◽  
Zhenzhen Wang ◽  
...  

<p>Oligosaccharides have important therapeutic applications. A useful route for oligosaccharides synthesis, especially rare disaccharides, is reverse hydrolysis by <i>β</i>-glucosidase. However, the low conversion efficiency of disaccharides from monosaccharides limits its large-scale production because the equilibrium is biased in the direction of hydrolysis. Based on the analysis of the docking results, we hypothesized that the hydropathy index of key amino acid residues in the catalytic site is closely related with disaccharide synthesis and more hydrophilic residues located in the catalytic site would enhance reverse hydrolysis activity. In this study, positive variants<i> Tr</i>Cel1b<sup>I177S</sup>, <i>Tr</i>Cel1b<sup>I177S/I174S</sup>, and <i>Tr</i>Cel1b<sup>I177S/I174S/W173H</sup>, and one negative variant <i>Tr</i>Cel1b<sup>N240I</sup> were designed according to the <u>H</u>ydropathy <u>I</u>ndex <u>F</u>or <u>E</u>nzyme <u>A</u>ctivity (HIFEA) strategy. The reverse hydrolysis with <i>Tr</i>Cel1b<sup>I177S/I174S/W173H </sup>was accelerated and then the maximum total production (<a>195.8 mg/ml/mg enzyme</a>) of the synthesized disaccharides was increased 3.5-fold compared to that of wildtype. On the contrary, <a><i>Tr</i>Cel1b</a><sup>N240I</sup> lost reverse hydrolysis activity. The results demonstrate that<a> </a><a>the average hydropathy index</a> of <a>the key amino acid residues </a>in the catalytic site of<i> Tr</i>Cel1b is an important factor for the synthesis of laminaribiose, sophorose, and cellobiose. The HIFEA strategy provides a new perspective for the rational design of <i>β</i>-glucosidases used for the synthesis of oligosaccharides.</p>


Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 124 ◽  
Author(s):  
Pandey ◽  
Daas ◽  
Solms

In this study, the kinetics of flue gas hydrate formation in bulk water in the presence of selected amino acids and surfactants are investigated. Four amino acids (3000 ppm) are selected based on different hydropathy index. Constant-ramping and isothermal experiments at 120 bar pressure and 1 °C temperature are carried out to compare their hydrate promotion capabilities with surfactant sodium dodecyl sulfate (SDS) (500–3000 ppm) and water. Based on experimental results, we report the correlation between hydrate promotion capability of amino acids and their hydrophobicity. Hydrophobic amino acids show stronger flue gas hydrate promotion capability than water and hydrophilic amino acids. We discuss the controlling mechanisms to differentiate between promoters and inhibitors’ roles among the amino acids. Between 2000–3000 ppm concentrations, hydrophobic amino acids have near similar promotion capabilities as SDS. This research highlights the potential use of amino acids as promoters or inhibitors for various applications.


2019 ◽  
Author(s):  
Alexei Tsygvintsev

AbstractWe study the set of about 35000 primary structures of natural proteins of length more than 360 residues and the same size set generated via partial or total randomization. Associated to every sequence composed of 20 amino acids, a time series is formed from hydropathy values of the first 360 residues. To measure the absolute deviations of hydropathy index on different time scales, the 24-dimensional vector of total log-amplitudes is introduced. We describe then a configuration of the 1-hidden layer neural network which is trained to solve the binary classification problem of natural and random sequences. A satisfactory distinguishing accuracy random/natural of 88% is obtained.


2019 ◽  
Vol 19 (3) ◽  
pp. 599 ◽  
Author(s):  
Tegar Wijaya ◽  
Rukman Hertadi

The ability of surfactant-like peptides to emulsify oil has become the main focus of our current study. We predicted the ability of a series of surfactant-like peptides (G6D, A6D, M6D, F6D, L6D, V6D, and I6D) to emulsify decane molecules using coarse-grained molecular dynamics simulations. A 1-μs simulation of each peptide was carried out at 298 K and 1 atm using MARTINI force field. Simulation system was constructed to consist of 100 peptide molecules, 20 decane molecules, water, antifreeze particles and neutralizing ions in a random configuration. Out of seven tested peptides, M6D, F6D, L6D, V6D, and I6D were able to form emulsion while G6D and A6D self-assembled to order b-strands. A higher hydropathy index of amino acids constituting the hydrophobic tail renders the formation of an emulsion by peptides more likely. By calculating contact number between peptides and decanes, we found that emulsion stability and geometry depends on the structure of amino acids constituting the hydrophobic tail. Analysis of simulation trajectory revealed that emulsions are formed by small nucleation following by fusion to form a bigger emulsion. This study reveals the underlying principle at the molecular level of surfactant peptide ability to form an emulsion with hydrophobic molecules.


2017 ◽  
Author(s):  
Marilyn F. Slininger Lee ◽  
Christopher M. Jakobson ◽  
Danielle Tullman-Ercek

AbstractBacterial microcompartments are a class of proteinaceous organelles comprising a characteristic protein shell enclosing a set of enzymes. Compartmentalization can prevent escape of volatile or toxic intermediates, prevent off-pathway reactions, and create private cofactor pools. Encapsulation in synthetic microcompartment organelles will enhance the function of heterologous pathways, but to do so, it is critical to understand how to control diffusion in and out of the microcompartment organelle. To this end, we explored how small differences in the shell protein structure result in changes in the diffusion of metabolites through the shell. We found that the ethanolamine utilization (Eut) protein EutM properly incorporates into the 1,2-propanediol utilization (Pdu) microcompartment, altering native metabolite accumulation and the resulting growth on 1,2-propanediol as the sole carbon source. Further, we identified a single pore-lining residue mutation that confers the same phenotype as substitution of the full EutM protein, indicating that small molecule diffusion through the shell is the cause of growth enhancement. Finally, we show that the hydropathy index and charge of pore amino acids are important indicators to predict how pore mutations will affect growth on 1,2- propanediol, likely by controlling diffusion of one or more metabolites. This study highlights the success of two strategies to engineer microcompartment control over metabolite transport: altering the existing shell protein pore via mutation of the pore-lining residues, and generating chimeras using shell proteins with the desired pores.TOC Abstract Graphic


Sign in / Sign up

Export Citation Format

Share Document