scholarly journals Quantitative genetics of phosphorus content in the freshwater herbivore, Daphnia pulicaria

Author(s):  
Ryan E. Sherman ◽  
Rachel Hartnett ◽  
Emily L. Kiehnau ◽  
Lawrence J. Weider ◽  
Punidan D. Jeyasingh
Author(s):  
David P. Bazett-Jones ◽  
Mark L. Brown

A multisubunit RNA polymerase enzyme is ultimately responsible for transcription initiation and elongation of RNA, but recognition of the proper start site by the enzyme is regulated by general, temporal and gene-specific trans-factors interacting at promoter and enhancer DNA sequences. To understand the molecular mechanisms which precisely regulate the transcription initiation event, it is crucial to elucidate the structure of the transcription factor/DNA complexes involved. Electron spectroscopic imaging (ESI) provides the opportunity to visualize individual DNA molecules. Enhancement of DNA contrast with ESI is accomplished by imaging with electrons that have interacted with inner shell electrons of phosphorus in the DNA backbone. Phosphorus detection at this intermediately high level of resolution (≈lnm) permits selective imaging of the DNA, to determine whether the protein factors compact, bend or wrap the DNA. Simultaneously, mass analysis and phosphorus content can be measured quantitatively, using adjacent DNA or tobacco mosaic virus (TMV) as mass and phosphorus standards. These two parameters provide stoichiometric information relating the ratios of protein:DNA content.


Author(s):  
N.A. Batyakhina N.A. ◽  

The influence of various annual multicomponent mixtures in the crop rotation link on its productivity and fertility of gray forest soil is shown. The complexity of the structure of plant communities has reduced the share of weeds in crop production annual mix, 2.6-3.7% and conservation tillage for wheat has increased by 2.5 times the phosphorus content is 1.9 times the potassium, 12% increased productivity.


Author(s):  
Re-Long Chiu ◽  
Jason Higgins ◽  
Toby Kinder ◽  
Juha Tyni ◽  
Sharon Ying ◽  
...  

Abstract High contact resistance can be caused by moisture absorption in low phosphorus content BPTEOS. Moisture diffused through the TiN glue layer is absorbed by the BPTEOS during subsequent thermal processes resulting in increased contact resistance. This failure mode was studied by combining different failure analysis methods and was confirmed by duplication on experimental wafers.


Sign in / Sign up

Export Citation Format

Share Document