scholarly journals Effects of predator specialization, host plant and climate on biological control of aphids by natural enemies: a meta-analysis

2013 ◽  
Vol 50 (1) ◽  
pp. 262-270 ◽  
Author(s):  
Eva Diehl ◽  
Elvira Sereda ◽  
Volkmar Wolters ◽  
Klaus Birkhofer
2019 ◽  
Vol 112 (4) ◽  
pp. 1587-1597 ◽  
Author(s):  
Juan Pedro Raul Bouvet ◽  
Alberto Urbaneja ◽  
César Monzó

Abstract The Spirea citrus aphid, Aphis spiraecola Patch, and the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), are key pests of clementine mandarines in the Mediterranean basin. Severity of aphid infestations is determined by environmental variables, host plant phenology patterns, and the biological control exerted by their associated natural enemies. However, there is no information about the role these limiting and regulating factors play. Aphid densities, citrus phenology, and associated predators that overwinter in the crop were monitored weekly throughout two flush growth periods (February to July) in four clementine mandarin groves; relationships between these parameters and environmental variables (temperature and precipitation) were studied. Our results show exponential increase in aphid infestation levels to coincide with citrus phenological stages B3 and B4; shoots offer more space and nutritional resources for colony growth at these stages. Duration of these phenological stages, which was mediated by mean temperature, seems to importantly determine the severity of aphid infestations in the groves. Among those studied, the micro-coccinellids, mostly Scymnus species, were the only group of predators with the ability to efficiently regulate aphid populations. These natural enemies had the highest temporal and spatial demographic stability. Aphid regulation success was only achieved through early presence of natural enemies in the grove, at the aphid colonization phase. Our results suggest that conservation strategies aimed at preserving and enhancing Scymnus sp. populations may make an important contribution to the future success of the biological control of these key citrus pests.


Sociobiology ◽  
2016 ◽  
Vol 63 (2) ◽  
pp. 755
Author(s):  
Raí Martins De Jesus ◽  
Ramon Paes Junior ◽  
Gleicy Do Carmo ◽  
Danilo Mota ◽  
Lessando Moreira Gontijo ◽  
...  

The notion that tending ants provide protection to honeydew-producing hemipterans is widely accepted. Nevertheless, there have been debates about whether or not this protection can always disrupt the biological control of hemipterans. Although various hemipteran species interact with tending ants, most studies have focused on the mutualism between ants and aphids.  Woolly whitefly Aleurothrixus floccosus (Maskell) is an important pest of citrus whose nymphs are frequently tended by ants such as Camponotus. However, it is unknown whether or not ants in this genus can disrupt biological control of woolly whitefly by protecting this pest’s nymphs from natural enemies. We investigated the impact of Camponotus ants on the biological control of woolly whitefly in the field by excluding or allowing the access of ants to whitefly nymph colonies in different tangerine trees. Furthermore, in a laboratory study we also assessed the behavior of Camponotus ants in response to woolly whitefly’s common predator cues (visual and scent).  In summary, this field-laboratory study suggests that there is no mutualism between tending Camponotus ants and the whitefly A. floccosus; rather it indicates commensalism as an alternative interaction. Interactions as this may provide more benefits for the host plant, whereby Camponotus ants can reduce sooty mold by removing honeydew from the leaves and favor pest biological control by leaving the whiteflies unprotected.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2776 ◽  
Author(s):  
Margaret R. Douglas ◽  
John F. Tooker

BackgroundSeed-applied neonicotinoids are widely used in agriculture, yet their effects on non-target species remain incompletely understood. One important group of non-target species is arthropod natural enemies (predators and parasitoids), which contribute considerably to suppression of crop pests. We hypothesized that seed-applied neonicotinoids reduce natural-enemy abundance, but not as strongly as alternative insecticide options such as soil- and foliar-applied pyrethroids. Furthermore we hypothesized that seed-applied neonicotinoids affect natural enemies through a combination of toxin exposure and prey scarcity.MethodsTo test our hypotheses, we compiled datasets comprising observations from randomized field studies in North America and Europe that compared natural-enemy abundance in plots that were planted with seed-applied neonicotinoids to control plots that were either (1) managed without insecticides (20 studies, 56 site-years, 607 observations) or (2) managed with pyrethroid insecticides (eight studies, 15 site-years, 384 observations). Using the effect size Hedge’sdas the response variable, we used meta-regression to estimate the overall effect of seed-applied neonicotinoids on natural-enemy abundance and to test the influence of potential moderating factors.ResultsSeed-applied neonicotinoids reduced the abundance of arthropod natural enemies compared to untreated controls (d= −0.30 ± 0.10 [95% confidence interval]), and as predicted under toxin exposure this effect was stronger for insect than for non-insect taxa (QM= 8.70, df = 1,P= 0.003). Moreover, seed-applied neonicotinoids affected the abundance of arthropod natural enemies similarly to soil- or foliar-applied pyrethroids (d= 0.16 ± 0.42 or −0.02 ± 0.12; with or without one outlying study). Effect sizes were surprisingly consistent across both datasets (I2 = 2.7% for no-insecticide controls;I2 = 0% for pyrethroid controls), suggesting little moderating influence of crop species, neonicotinoid active ingredients, or methodological choices.DiscussionOur meta-analysis of nearly 1,000 observations from North American and European field studies revealed that seed-applied neonicotinoids reduced the abundance of arthropod natural enemies similarly to broadcast applications of pyrethroid insecticides. These findings suggest that substituting pyrethroids for seed-applied neonicotinoids, or vice versa, will have little net affect on natural enemy abundance. Consistent with previous lab work, our results also suggest that seed-applied neonicotinoids are less toxic to spiders and mites, which can contribute substantially to biological control in many agricultural systems. Finally, our ability to interpret the negative effect of neonicotinoids on natural enemies is constrained by difficulty relating natural-enemy abundance to biological control function; this is an important area for future study.


EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
James P. Cuda ◽  
Patricia Prade ◽  
Carey R. Minteer-Killian

In the late 1970s, Brazilian peppertree, Schinus terebinthifolia Raddi (Sapindales: Anacardiaceae), was targeted for classical biological control in Florida because its invasive properties (see Host Plants) are consistent with escape from natural enemies (Williams 1954), and there are no native Schinus spp. in North America. The lack of native close relatives should minimize the risk of damage to non-target plants from introduced biological control agents (Pemberton 2000). [...]


Author(s):  
Léna Durocher-Granger ◽  
Tibonge Mfune ◽  
Monde Musesha ◽  
Alyssa Lowry ◽  
Kathryn Reynolds ◽  
...  

AbstractInvasive alien species have environmental, economic and social impacts, disproportionally threatening livelihood and food security of smallholder farmers in low- and medium-income countries. Fall armyworm (FAW) (Spodoptera frugiperda), an invasive insect pest from the Americas, causes considerable losses on maize to smallholder farmers in Africa since 2016. The increased use of pesticides to control FAW in Africa raises concerns for health and environmental risks resulting in a growing interest in research on biological control options for smallholder farmers. In order to evaluate the occurrence of local natural enemies attacking FAW, we collected on a weekly basis FAW eggs and larvae during a maize crop cycle in the rainy season of 2018–2019 at four locations in the Lusaka and Central provinces in Zambia. A total of 4373 larvae and 162 egg masses were collected. For each location and date of collection, crop stage, the number of plants checked and amount of damage were recorded to analyse which factors best explain the occurrence of the natural enemy species on maize. Overall parasitism rates from local natural enemies at each location varied between 8.45% and 33.11%. We identified 12 different egg-larval, larval and larval-pupal parasitoid species. Location, maize growth stage, pest density and larval stage significantly affected parasitoid species occurrence. Our findings indicate that there is potential for increasing local populations of natural enemies of FAW through conservation biological control programmes and develop safe and practical control methods for smallholder farmers.


Sign in / Sign up

Export Citation Format

Share Document