scholarly journals Effects of Citrus Overwintering Predators, Host Plant Phenology and Environmental Variables on Aphid Infestation Dynamics in Clementine Citrus

2019 ◽  
Vol 112 (4) ◽  
pp. 1587-1597 ◽  
Author(s):  
Juan Pedro Raul Bouvet ◽  
Alberto Urbaneja ◽  
César Monzó

Abstract The Spirea citrus aphid, Aphis spiraecola Patch, and the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), are key pests of clementine mandarines in the Mediterranean basin. Severity of aphid infestations is determined by environmental variables, host plant phenology patterns, and the biological control exerted by their associated natural enemies. However, there is no information about the role these limiting and regulating factors play. Aphid densities, citrus phenology, and associated predators that overwinter in the crop were monitored weekly throughout two flush growth periods (February to July) in four clementine mandarin groves; relationships between these parameters and environmental variables (temperature and precipitation) were studied. Our results show exponential increase in aphid infestation levels to coincide with citrus phenological stages B3 and B4; shoots offer more space and nutritional resources for colony growth at these stages. Duration of these phenological stages, which was mediated by mean temperature, seems to importantly determine the severity of aphid infestations in the groves. Among those studied, the micro-coccinellids, mostly Scymnus species, were the only group of predators with the ability to efficiently regulate aphid populations. These natural enemies had the highest temporal and spatial demographic stability. Aphid regulation success was only achieved through early presence of natural enemies in the grove, at the aphid colonization phase. Our results suggest that conservation strategies aimed at preserving and enhancing Scymnus sp. populations may make an important contribution to the future success of the biological control of these key citrus pests.

Sociobiology ◽  
2016 ◽  
Vol 63 (2) ◽  
pp. 755
Author(s):  
Raí Martins De Jesus ◽  
Ramon Paes Junior ◽  
Gleicy Do Carmo ◽  
Danilo Mota ◽  
Lessando Moreira Gontijo ◽  
...  

The notion that tending ants provide protection to honeydew-producing hemipterans is widely accepted. Nevertheless, there have been debates about whether or not this protection can always disrupt the biological control of hemipterans. Although various hemipteran species interact with tending ants, most studies have focused on the mutualism between ants and aphids.  Woolly whitefly Aleurothrixus floccosus (Maskell) is an important pest of citrus whose nymphs are frequently tended by ants such as Camponotus. However, it is unknown whether or not ants in this genus can disrupt biological control of woolly whitefly by protecting this pest’s nymphs from natural enemies. We investigated the impact of Camponotus ants on the biological control of woolly whitefly in the field by excluding or allowing the access of ants to whitefly nymph colonies in different tangerine trees. Furthermore, in a laboratory study we also assessed the behavior of Camponotus ants in response to woolly whitefly’s common predator cues (visual and scent).  In summary, this field-laboratory study suggests that there is no mutualism between tending Camponotus ants and the whitefly A. floccosus; rather it indicates commensalism as an alternative interaction. Interactions as this may provide more benefits for the host plant, whereby Camponotus ants can reduce sooty mold by removing honeydew from the leaves and favor pest biological control by leaving the whiteflies unprotected.


2017 ◽  
Vol 33 (4) ◽  
pp. 386-392 ◽  
Author(s):  
Serena Magagnoli ◽  
Laura Depalo ◽  
Antonio Masetti ◽  
Gabriele Campanelli ◽  
Stefano Canali ◽  
...  

AbstractAgro-ecological service crops (ASC) can increase the vegetation complexity of agroecosystems leading to a positive impact on natural enemies of arthropod pests and on weed control. In this study, two ASC terminations (green manure and roller crimper) and a Mater-Bi-mulched control (MB) were compared in order to describe the effects on pests and beneficial dynamics in an organic vegetable system. The trials were conducted over two consecutive growing seasons in 2014 and 2015. Zucchini were grown as cash crop and barley as ASC. Pests and natural enemies were monitored fortnightly by visual samplings along the whole zucchini-growing season. Zucchini plants showed a faster vegetative growth in MB treatment than in ASC terminations. In both years, MB plots were characterized by higher soil temperature and higher leaf nitrogen concentration resulting in plants more susceptible to Aphis gossypii infestations. In all the experimental plots, natural enemies controlled aphid infestations and no insecticide and sprays were necessary. In conclusion, the tested ASC techniques have been suggested as a tool to mitigate aphid infestation.


2013 ◽  
Vol 50 (1) ◽  
pp. 262-270 ◽  
Author(s):  
Eva Diehl ◽  
Elvira Sereda ◽  
Volkmar Wolters ◽  
Klaus Birkhofer

2020 ◽  
Vol 42 ◽  
pp. e47120 ◽  
Author(s):  
Henrique Venâncio ◽  
Renata Alexandre Bianchi ◽  
Thaís Oliveira Santos Lobato ◽  
Marcus Vinícius Sampaio ◽  
Jean Carlos Santos

The establishment of invasive plants negatively affects natural environments. Invasive herbivores that attack weeds can be used as a form of biological control, but natural enemies of herbivores must be associated with this interaction to prevent the invasive phytophagous from become a local pest. We performed a greenhouse experiment to evaluate how the cotton aphid, Aphis gossypii, a ok and invasive herbivore, affects the performance of the weed Tithonia diversifolia, the Mexican sunflower. We also examined the relationship between the aphid and local natural enemies. Seedlings of T. diversifolia were divided in two groups: one infested by the aphid and another not infested. After 22 days, we assessed the relationship between aphid abundance and the presence of natural enemies (Coccinelidae and Aphidius platensis) on infested plants, and compared the vegetative performance of the two seedling groups. Both natural enemies were positively related to high aphid density on infested plants. Plants infested by the aphid presented foliar necrosis and senescence, and a reduction of around 50% in leaf number, foliar area, shoot length and shoot, root and total plant weight compared to non-infested plants. These results indicate potential biological control of Mexican sunflower seedlings by the cotton aphid, and control of this aphid by the studied natural enemies.


1997 ◽  
Vol 32 (1) ◽  
pp. 17-24 ◽  
Author(s):  
Vili Harizanova ◽  
Barbara Ekbom

Developmental time and fecundity of Aphidius colemani Viereck and Aphidoletes aphidimyza Rondani were studied under laboratory conditions on cucumber plants infested with Aphis gossypii Glover at a constant temperature of 20° C, photoperiod of 18 hours and 70% R. H. Developmental time from egg to adult for A. colemani lasted 13.9 days and for A. aphidimyza, from egg to larva was 3 days, larva to pupa 5.8 days, from pupa to adult 11.9 days, and total developmental time was 20.6 days. The average lifetime fecundity was 57.7 for A. colemani and 55.07 for A. aphidimyza. The variation for both species was considerable. Percentage of females for A. colemani was 58% and for A. aphidimyza 66%. One larva of A. aphidimyza will, on average, kill 23.8 A. gossypii during its life. Predation of parasitized aphids by A. aphidimyza was observed. Production of parasitoids was lower when the predator was present. The use of the two natural enemies together in control programs against A. gossypii is discussed.


EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
James P. Cuda ◽  
Patricia Prade ◽  
Carey R. Minteer-Killian

In the late 1970s, Brazilian peppertree, Schinus terebinthifolia Raddi (Sapindales: Anacardiaceae), was targeted for classical biological control in Florida because its invasive properties (see Host Plants) are consistent with escape from natural enemies (Williams 1954), and there are no native Schinus spp. in North America. The lack of native close relatives should minimize the risk of damage to non-target plants from introduced biological control agents (Pemberton 2000). [...]


Sign in / Sign up

Export Citation Format

Share Document