scholarly journals Drought responses by individual tree species are not often correlated with tree species diversity in European forests

2016 ◽  
Vol 53 (6) ◽  
pp. 1725-1734 ◽  
Author(s):  
David I. Forrester ◽  
Damien Bonal ◽  
Seid Dawud ◽  
Arthur Gessler ◽  
André Granier ◽  
...  
Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 1047 ◽  
Author(s):  
Ying Sun ◽  
Jianfeng Huang ◽  
Zurui Ao ◽  
Dazhao Lao ◽  
Qinchuan Xin

The monitoring of tree species diversity is important for forest or wetland ecosystem service maintenance or resource management. Remote sensing is an efficient alternative to traditional field work to map tree species diversity over large areas. Previous studies have used light detection and ranging (LiDAR) and imaging spectroscopy (hyperspectral or multispectral remote sensing) for species richness prediction. The recent development of very high spatial resolution (VHR) RGB images has enabled detailed characterization of canopies and forest structures. In this study, we developed a three-step workflow for mapping tree species diversity, the aim of which was to increase knowledge of tree species diversity assessment using deep learning in a tropical wetland (Haizhu Wetland) in South China based on VHR-RGB images and LiDAR points. Firstly, individual trees were detected based on a canopy height model (CHM, derived from LiDAR points) by the local-maxima-based method in the FUSION software (Version 3.70, Seattle, USA). Then, tree species at the individual tree level were identified via a patch-based image input method, which cropped the RGB images into small patches (the individually detected trees) based on the tree apexes detected. Three different deep learning methods (i.e., AlexNet, VGG16, and ResNet50) were modified to classify the tree species, as they can make good use of the spatial context information. Finally, four diversity indices, namely, the Margalef richness index, the Shannon–Wiener diversity index, the Simpson diversity index, and the Pielou evenness index, were calculated from the fixed subset with a size of 30 × 30 m for assessment. In the classification phase, VGG16 had the best performance, with an overall accuracy of 73.25% for 18 tree species. Based on the classification results, mapping of tree species diversity showed reasonable agreement with field survey data (R2Margalef = 0.4562, root-mean-square error RMSEMargalef = 0.5629; R2Shannon–Wiener = 0.7948, RMSEShannon–Wiener = 0.7202; R2Simpson = 0.7907, RMSESimpson = 0.1038; and R2Pielou = 0.5875, RMSEPielou = 0.3053). While challenges remain for individual tree detection and species classification, the deep-learning-based solution shows potential for mapping tree species diversity.


2017 ◽  
Vol 214 (3) ◽  
pp. 1281-1293 ◽  
Author(s):  
François-Xavier Joly ◽  
Alexandru Milcu ◽  
Michael Scherer-Lorenzen ◽  
Loreline-Katia Jean ◽  
Filippo Bussotti ◽  
...  

2019 ◽  
Vol 3 (1) ◽  
pp. 10-19 ◽  
Author(s):  
MD. RAYHANUR RAHMAN ◽  
Md. MIZANUR RAHMAN ◽  
Md. ARIF CHOWDHURY ◽  
JARIN AKHTER

Abstract. Rahman MdR, Rahman MdM, Chowdhury MdA, Akhter J. 2019. Tree species diversity and structural composition: The case of Durgapur Hill Forest, Netrokona, Bangladesh. Asian J For 3: 10-19. Tree species diversity and stand structure of Durgapur hill forest were assessed through stratified random sampling method using sample plots of 20 m x 20 m in size during the period of October 2017 to May 2018. A total of 1436 stems of ≥5 cm DBH of 56 tree species belonging to 50 genera and 29 families were enumerated from sample area. Density (855 stem ha-1) and Basal area (29.27 m2 ha-1) of tree species were enumerated. Besides, Shannon-Wiener’s, Margalef’s, Simpson’s and Pielou’s diversity index were recorded for all the tree species. The study showed that the most dominant 10 species have 58% of the total IVI (174.29 out of 300). Where, Acacia auriculiformis showed the maximum Importance Value Index (51.02) followed by Shorea robusta (24.23). Number of individual tree species were highest (49) in the height range of 7- <12 m whereas maximum (52) species were recorded in the DBH (cm) range of 5- <10 cm. However, Acacia auriculiformis, Shorea robusta, and Tectona grandis were found as the most dominant species based on hierarchical cluster analysis. Therefore, current study will be helpful to the future policymakers in formulating forest resource management plan of Durgapur hill forest.


2016 ◽  
Vol 23 ◽  
pp. 97-108 ◽  
Author(s):  
Diem Nguyen ◽  
Johanna Boberg ◽  
Katarina Ihrmark ◽  
Elna Stenström ◽  
Jan Stenlid

2021 ◽  
Vol 14 ◽  
pp. 194008292199541
Author(s):  
Xavier Haro-Carrión ◽  
Bette Loiselle ◽  
Francis E. Putz

Tropical dry forests (TDF) are highly threatened ecosystems that are often fragmented due to land-cover change. Using plot inventories, we analyzed tree species diversity, community composition and aboveground biomass patterns across mature (MF) and secondary forests of about 25 years since cattle ranching ceased (SF), 10–20-year-old plantations (PL), and pastures in a TDF landscape in Ecuador. Tree diversity was highest in MF followed by SF, pastures and PL, but many endemic and endangered species occurred in both MF and SF, which demonstrates the importance of SF for species conservation. Stem density was higher in PL, followed by SF, MF and pastures. Community composition differed between MF and SF due to the presence of different specialist species. Some SF specialists also occurred in pastures, and all species found in pastures were also recorded in SF indicating a resemblance between these two land-cover types even after 25 years of succession. Aboveground biomass was highest in MF, but SF and Tectona grandis PL exhibited similar numbers followed by Schizolobium parahyba PL, Ochroma pyramidale PL and pastures. These findings indicate that although species-poor, some PL equal or surpass SF in aboveground biomass, which highlights the critical importance of incorporating biodiversity, among other ecosystem services, to carbon sequestration initiatives. This research contributes to understanding biodiversity conservation across a mosaic of land-cover types in a TDF landscape.


Sign in / Sign up

Export Citation Format

Share Document