scholarly journals Relationships Between Soil Microbial Communities and Plant Communities on Different Slope Aspects in a Subalpine Coniferous Forest

Author(s):  
Luoshu He ◽  
Suhui Ma ◽  
Jiangling Zhu ◽  
Xinyu Xiong ◽  
Yangang Li ◽  
...  

Abstract Purpose The local microclimate of different slope aspects in the same area can not only impact soil environment and plant community but also affect soil microbial community. However, the relationship between aboveground plant communities and belowground soil microbial communities on various slope aspects has not been well understood.Methods We investigated the above- and belowground relationship on different slope aspects and explored how soil properties influence this relationship. Plant community attributes were evaluated by plant species richness and plant total basal area. Soil microbial community was assessed based on both 16S rRNA and ITS rRNA, using High-throughput Illumina sequencing. Results There was no significant correlation between plant richness and soil bacterial community composition on the north slope, but there was a positive correlation on the south slope and a significantly negative correlation on the flat site. There was a significantly negative correlation between soil fungal community composition and plant total basal area, which did not change with the slope aspect. In addition, there was no significant correlation between plant community species richness and soil microbial species richness.Conclusions In subalpine coniferous forests, the relationship between plant-soil bacteria varies with slope aspect, but the plant-soil fungi relationship is relatively consistent across different slope aspects. These results can improve our understanding of the relationship between plant and soil microorganisms in forest ecosystems under microtopographic changes and have important implications for the conservation of biodiversity and forest management in subalpine coniferous forests.

2017 ◽  
Vol 54 (4) ◽  
pp. 1028-1039 ◽  
Author(s):  
Jonathan T. Bauer ◽  
Noah Blumenthal ◽  
Anna J. Miller ◽  
Julia K. Ferguson ◽  
Heather L. Reynolds

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Alexia Stokes ◽  
Guillermo Angeles ◽  
Fabien Anthelme ◽  
Eduardo Aranda-Delgado ◽  
Isabelle Barois ◽  
...  

Abstract Objectives Altitude integrates changes in environmental conditions that determine shifts in vegetation, including temperature, precipitation, solar radiation and edaphogenetic processes. In turn, vegetation alters soil biophysical properties through litter input, root growth, microbial and macrofaunal interactions. The belowground traits of plant communities modify soil processes in different ways, but it is not known how root traits influence soil biota at the community level. We collected data to investigate how elevation affects belowground community traits and soil microbial and faunal communities. This dataset comprises data from a temperate climate in France and a twin study was performed in a tropical zone in Mexico. Data description The paper describes soil physical and chemical properties, climatic variables, plant community composition and species abundance, plant community traits, soil microbial functional diversity and macrofaunal abundance and diversity. Data are provided for six elevations (1400–2400 m) ranging from montane forest to alpine prairie. We focused on soil biophysical properties beneath three dominant plant species that structure local vegetation. These data are useful for understanding how shifts in vegetation communities affect belowground processes, such as water infiltration, soil aggregation and carbon storage. Data will also help researchers understand how plant communities adjust to a changing climate/environment.


2013 ◽  
Vol 85 (3) ◽  
pp. 923-935 ◽  
Author(s):  
ANTONIO B. PEREIRA ◽  
JAIR PUTZKE

This work aims to summarize the results of research carried out by Brazilian researchers on the plant communities of Antarctic ice free areas during the last twenty five years. Since 1988 field work has been carried out in Elephant Island, King George Island, Nelson Island and Deception Island. During this period six papers were published on the chemistry of lichens, seven papers on plant taxonomy, five papers on plant biology, two studies on UVB photoprotection, three studies about the relationships between plant communities and bird colonies and eleven papers on plant communities from ice free areas. At the present, Brazilian botanists are researching the plant communities of Antarctic ice free areas in order to understand their relationships to soil microbial communities, the biodiversity, the distribution of the plants populations and their relationship with birds colonies. In addition to these activities, a group of Brazilian researchers are undertaking studies related to Antarctic plant genetic diversity, plant chemistry and their biotechnological applications.


2021 ◽  
Author(s):  
Sean Lee ◽  
Thomas J. Mozdzer ◽  
Samantha K. Chapman ◽  
M. Gonzalez Mateu ◽  
A. H. Baldwin ◽  
...  

Plants can cultivate soil microbial communities that affect subsequent plant growth through a plant-soil feedback (PSF).  Strong evidence indicates that PSFs can mediate the invasive success of exotic upland plants, but many of the most invasive plants occur in wetlands.  In North America, the rapid spread of European Phragmites australis cannot be attributed to innate physiological advantages, thus PSFs may mediate invasion. Here we apply a two-phase fully-factorial plant-soil feedback design in which field-derived soil inocula were conditioned using saltmarsh plants and then were added to sterile soil mesocosms and planted with each plant type.  This design allowed us to assess complete soil biota effects on intraspecific PSFs between native and introduced P. australis as well as heterospecific feedbacks between P. australis and the native wetland grass, Spartina patens. Our results demonstrate that native P. australis experienced negative conspecific feedbacks while introduced P. australis experienced neutral conspecific feedbacks.  Interestingly, S. patens soil inocula inhibited growth in both lineages of P. australis while introduced and native P. australis inocula promoted the growth of S. patens suggestive of biotic resistance against P. australis invasion by S. patens . Our findings suggest that PSFs are not directly promoting the invasion of introduced P. australis in North America. Furthermore, native plants like S. patens seem to exhibit soil microbe mediated biotic resistance to invasion which highlights the importance of disturbance in mediating introduced P. australis invasion.


2020 ◽  
Vol 6 (33) ◽  
pp. eabc1176 ◽  
Author(s):  
Evgenios Agathokleous ◽  
Zhaozhong Feng ◽  
Elina Oksanen ◽  
Pierre Sicard ◽  
Qi Wang ◽  
...  

Elevated tropospheric ozone concentrations induce adverse effects in plants. We reviewed how ozone affects (i) the composition and diversity of plant communities by affecting key physiological traits; (ii) foliar chemistry and the emission of volatiles, thereby affecting plant-plant competition, plant-insect interactions, and the composition of insect communities; and (iii) plant-soil-microbe interactions and the composition of soil communities by disrupting plant litterfall and altering root exudation, soil enzymatic activities, decomposition, and nutrient cycling. The community composition of soil microbes is consequently changed, and alpha diversity is often reduced. The effects depend on the environment and vary across space and time. We suggest that Atlantic islands in the Northern Hemisphere, the Mediterranean Basin, equatorial Africa, Ethiopia, the Indian coastline, the Himalayan region, southern Asia, and Japan have high endemic richness at high ozone risk by 2100.


2019 ◽  
Vol 116 (15) ◽  
pp. 7371-7376 ◽  
Author(s):  
Jenalle L. Eck ◽  
Simon M. Stump ◽  
Camille S. Delavaux ◽  
Scott A. Mangan ◽  
Liza S. Comita

Microbes are thought to maintain diversity in plant communities by specializing on particular species, but it is not known whether microbes that specialize within species (i.e., on genotypes) affect diversity or dynamics in plant communities. Here we show that soil microbes can specialize at the within-population level in a wild plant species, and that such specialization could promote species diversity and seed dispersal in plant communities. In a shadehouse experiment in Panama, we found that seedlings of the native tree species, Virola surinamensis (Myristicaceae), had reduced performance in the soil microbial community of their maternal tree compared with in the soil microbial community of a nonmaternal tree from the same population. Performance differences were unrelated to soil nutrients or to colonization by mycorrhizal fungi, suggesting that highly specialized pathogens were the mechanism reducing seedling performance in maternal soils. We then constructed a simulation model to explore the ecological and evolutionary consequences of genotype-specific pathogens in multispecies plant communities. Model results indicated that genotype-specific pathogens promote plant species coexistence—albeit less strongly than species-specific pathogens—and are most effective at maintaining species richness when genetic diversity is relatively low. Simulations also revealed that genotype-specific pathogens select for increased seed dispersal relative to species-specific pathogens, potentially helping to create seed dispersal landscapes that allow pathogens to more effectively promote diversity. Combined, our results reveal that soil microbes can specialize within wild plant populations, affecting seedling performance near conspecific adults and influencing plant community dynamics on ecological and evolutionary time scales.


2001 ◽  
Vol 31 (12) ◽  
pp. 2067-2079 ◽  
Author(s):  
Robert L Deal

The effects of partial cutting on plant species richness, community structure, and several understory species that are important for deer forage were evaluated on 73 plots in 18 stands throughout southeast Alaska. These partially cut stands were harvested 12–96 years ago when 16–96% of the former stand basal area was removed. The species richness and community structure of understory plants were similar in uncut and partially cut plots. However, plots where more than 50% of the basal area was cut had a significantly different plant community structure. Species composition and abundance also appeared to be distinctly different between hemlock-dominated and spruce-dominated stands. Partial cutting did not significantly change abundance for most of the important forage species for deer. The similarity in plant community structure between partially cut and uncut old-growth stands may be related to forest stand structures. The heterogeneous stand structures that develop after partial cutting are more similar to old-growth stands than to the uniform young-growth stands that develop after stand replacing disturbances such as clear-cutting.


1994 ◽  
Vol 346 (1316) ◽  
pp. 185-193 ◽  

The Park Grass Experiment (PGE), begun at Rothamsted Experimental Station in 1856 and still running, affords a unique opportunity to test for the influence of species number and soil reaction on biomass variability in a suite of comparable plant communities. Biomass variability was measured by calculating the coefficient of variation ( CV ) over time of annual hay yield in an eleven-year moving window. CV and species number were both strongly negatively correlated with biomass; both relations were affected by time and pH. Multiple regression of CV on species number and mean biomass for nonacidified plots in 42 years between 1862 and 1991 showed a relationship between biomass and CV which was negative in most years and significantly so in nearly three quarters of them (30/42). We are unable to tell how much of this effect is intrinsic to the statistical relation between the mean and CV of biomass. Species number was negatively correlated with CV in 29/42 years, but this was statistically significant on only three occasions. Because this relation was highly significant in the year (1991) for which we have the largest sample size (34 plots), we tentatively conclude that biomass variability may be lower in more species-rich communities, although the effect is possibly a weak one. We suggest that physiological stresses imposed by low pH may explain the greater variability of plots with acidified soil. An increase in the variability of biomass that occurred across plots with time may be due in part to acidification across the whole experiment. Three hypotheses are proposed to explain the relationship between species richness and biomass variability: (i) biomass variability on more species-rich plots is better buffered against climatic variation because species differ in their response to climatic conditions: (ii) there are fewer species on plots with greater biomass variability because species have been lost by competitive exclusion in years when biomass reaches high values; (iii) species richness and variability are both correlated with a third variable, for example soil moisture deficit within a plot. All three hypotheses are susceptible to testing within the PGE.


Sign in / Sign up

Export Citation Format

Share Document