scholarly journals Physiology and genetics of ethanologenesis in the acetogenic bacterium Acetobacterium woodii

Author(s):  
Jimyung Moon ◽  
Volker Müller
2013 ◽  
Vol 79 (6) ◽  
pp. 1942-1947 ◽  
Author(s):  
Verena Hess ◽  
José M. González ◽  
Anutthaman Parthasarathy ◽  
Wolfgang Buckel ◽  
Volker Müller

ABSTRACTThe anaerobic acetogenic bacteriumAcetobacterium woodiicouples reduction of caffeate with electrons derived from molecular hydrogen to the synthesis of ATP by a chemiosmotic mechanism with sodium ions as coupling ions. Caffeate is activated to caffeyl coenzyme A (caffeyl-CoA) prior to its reduction, and the caffeate reduction operon encodes an ATP-dependent caffeyl-CoA synthetase that is thought to catalyze the initial caffeate activation. The operon also encodes a potential CoA transferase, the product ofcarA, which was thought to be involved in subsequent ATP-independent caffeate activation. To prove the proposed function ofcarA, we overproduced its protein inEscherichia coliand then purified it. Purified CarA drives the formation of caffeyl-CoA from caffeate with hydrocaffeyl-CoA as the CoA donor. The dependence of the reaction on caffeate and hydrocaffeyl-CoA followed Michaelis-Menten kinetics, with apparentKmvalues of 75 ± 5 μM for caffeate and 8 ± 2 μM for hydrocaffeyl-CoA. The enzyme activity had broad ranges of pH and temperature optima. In addition to being able to use caffeate, CarA could usep-coumarate and ferulate but not cinnamate, sinapate, orp-hydroxybenzoate as a CoA acceptor. Neither acetyl-CoA nor butyryl-CoA served as the CoA donor for CarA. The enzyme uses a ping-pong mechanism for CoA transfer and is the first classified member of a new subclass of family I CoA transferases that has two catalytic domains on one polypeptide chain. Apparently, CarA catalyzes an energy-saving CoA loop for caffeate activation in the steady state of caffeate respiration.


2015 ◽  
Vol 81 (14) ◽  
pp. 4711-4719 ◽  
Author(s):  
Verena Hess ◽  
Olga Oyrik ◽  
Dragan Trifunović ◽  
Volker Müller

ABSTRACTThe acetogenic bacteriumAcetobacterium woodiiis able to reduce CO2to acetate via the Wood-Ljungdahl pathway. Only recently we demonstrated that degradation of 1,2-propanediol byA. woodiiwas not dependent on acetogenesis, but that it is disproportionated to propanol and propionate. Here, we analyzed the metabolism ofA. woodiion another diol, 2,3-butanediol. Experiments with growing and resting cells, metabolite analysis and enzymatic measurements revealed that 2,3-butanediol is oxidized in an NAD+-dependent manner to acetate via the intermediates acetoin, acetaldehyde, and acetyl coenzyme A. Ethanol was not detected as an end product, either in growing cultures or in cell suspensions. Apparently, all reducing equivalents originating from the oxidation of 2,3-butanediol were funneled into the Wood-Ljungdahl pathway to reduce CO2to another acetate. Thus, the metabolism of 2,3-butanediol requires the Wood-Ljungdahl pathway.


2007 ◽  
Vol 73 (11) ◽  
pp. 3630-3636 ◽  
Author(s):  
Sabrina Dilling ◽  
Frank Imkamp ◽  
Silke Schmidt ◽  
Volker Müller

ABSTRACT The anaerobic acetogenic bacterium Acetobacterium woodii can conserve energy by oxidation of various substrates coupled to either carbonate or caffeate respiration. We used a cell suspension system to study the regulation and kinetics of induction of caffeate respiration. After addition of caffeate to suspensions of fructose-grown cells, there was a lag phase of about 90 min before caffeate reduction commenced. However, in the presence of tetracycline caffeate was not reduced, indicating that de novo protein synthesis is required for the ability to respire caffeate. Induction also took place in the presence of CO2, and once a culture was induced, caffeate and CO2 were used simultaneously as electron acceptors. Induction of caffeate reduction was also observed with H2 plus CO2 as the substrate, but the lag phase was much longer. Again, caffeate and CO2 were used simultaneously as electron acceptors. In contrast, during oxidation of methyl groups derived from methanol or betaine, acetogenesis was the preferred energy-conserving pathway, and caffeate reduction started only after acetogenesis was completed. The differential flow of reductants was also observed with suspensions of resting cells in which caffeate reduction was induced prior to harvest of the cells. These cell suspensions utilized caffeate and CO2 simultaneously with fructose or hydrogen as electron donors, but CO2 was preferred over caffeate during methyl group oxidation. Caffeate-induced resting cells could reduce caffeate and also p-coumarate or ferulate with hydrogen as the electron donor. p-Coumarate or ferulate also served as an inducer for caffeate reduction. Interestingly, caffeate-induced cells reduced ferulate in the absence of an external reductant, indicating that caffeate also induces the enzymes required for oxidation of the methyl group of ferulate.


2016 ◽  
Vol 198 (7) ◽  
pp. 1058-1065 ◽  
Author(s):  
Dragan Trifunović ◽  
Kai Schuchmann ◽  
Volker Müller

ABSTRACTThe acetogenic bacteriumAcetobacterium woodiiis able to grow by the oxidation of diols, such as 1,2-propanediol, 2,3-butanediol, or ethylene glycol. Recent analyses demonstrated fundamentally different ways for oxidation of 1,2-propanediol and 2,3-butanediol. Here, we analyzed the metabolism of ethylene glycol. Our data demonstrate that ethylene glycol is dehydrated to acetaldehyde, which is then disproportionated to ethanol and acetyl coenzyme A (acetyl-CoA). The latter is further converted to acetate, and this pathway is coupled to ATP formation by substrate-level phosphorylation. Apparently, the product ethanol is in part further oxidized and the reducing equivalents are recycled by reduction of CO2to acetate in the Wood-Ljungdahl pathway. Biochemical data as well as the results of protein synthesis analysis are consistent with the hypothesis that the propane diol dehydratase (PduCDE) and CoA-dependent propionaldehyde dehydrogenase (PduP) proteins, encoded by thepdugene cluster, also catalyze ethylene glycol dehydration to acetaldehyde and its CoA-dependent oxidation to acetyl-CoA. Moreover, genes encoding bacterial microcompartments as part of thepdugene cluster are also expressed during growth on ethylene glycol, arguing for a dual function of the Pdu microcompartment system.IMPORTANCEAcetogenic bacteria are characterized by their ability to use CO2as a terminal electron acceptor by a specific pathway, the Wood-Ljungdahl pathway, enabling in most acetogens chemolithoautotrophic growth with H2and CO2. However, acetogens are very versatile and can use a wide variety of different substrates for growth. Here we report on the elucidation of the pathway for utilization of ethylene glycol by the model acetogenAcetobacterium woodii. This diol is degraded by dehydration to acetaldehyde followed by a disproportionation to acetate and ethanol. We present evidence that this pathway is catalyzed by the same enzyme system recently described for the utilization of 1,2-propanediol. The enzymes for ethylene glycol utilization seem to be encapsulated in protein compartments, known as bacterial microcompartments.


Author(s):  
Dragan TrifunoviĆ ◽  
Jimyung Moon ◽  
Anja Poehlein ◽  
Rolf Daniel ◽  
Volker Müller

2020 ◽  
Vol 1861 (11) ◽  
pp. 148263 ◽  
Author(s):  
Martin Kuhns ◽  
Verena Schuchmann ◽  
Silke Schmidt ◽  
Thorsten Friedrich ◽  
Anja Wiechmann ◽  
...  

2015 ◽  
Vol 197 (9) ◽  
pp. 1681-1689 ◽  
Author(s):  
Johannes Bertsch ◽  
Christian Öppinger ◽  
Verena Hess ◽  
Julian D. Langer ◽  
Volker Müller

ABSTRACTThe methylenetetrahydrofolate reductase (MTHFR) of acetogenic bacteria catalyzes the reduction of methylene-THF, which is highly exergonic with NADH as the reductant. Therefore, the enzyme was suggested to be involved in energy conservation by reducing ferredoxin via electron bifurcation, followed by Na+translocation by the Rnf complex. The enzyme was purified fromAcetobacterium woodiiand shown to have an unprecedented subunit composition containing the three subunits RnfC2, MetF, and MetV. The stable complex contained 2 flavin mononucleotides (FMN), 23.5 ± 1.2 Fe and 24.5 ± 1.5 S, which fits well to the predicted six [4Fe4S] clusters in MetV and RnfC2. The enzyme catalyzed NADH:methylviologen and NADH:ferricyanide oxidoreductase activity but also methylene-tetrahydrofolate (THF) reduction with NADH as the reductant. The NADH:methylene-THF reductase activity was high (248 U/mg) and not stimulated by ferredoxin. Furthermore, reduction of ferredoxin, alone or in the presence of methylene-THF and NADH, was never observed. MetF or MetVF was not able to catalyze the methylene-THF-dependent oxidation of NADH, but MetVF could reduce methylene-THF using methyl viologen as the electron donor. The purified MTHFR complex did not catalyze the reverse reaction, the endergonic oxidation of methyl-THF with NAD+as the acceptor, and this reaction could not be driven by reduced ferredoxin. However, addition of protein fractions made the oxidation of methyl-THF to methylene-THF coupled to NAD+reduction possible. Our data demonstrate that the MTHFR ofA. woodiicatalyzes methylene-THF reduction according to the following reaction: NADH + methylene-THF → methyl-THF + NAD+. The differences in the subunit compositions of MTHFRs of bacteria are discussed in the light of their different functions.IMPORTANCEEnergy conservation in the acetogenic bacteriumAcetobacterium woodiiinvolves ferredoxin reduction followed by a chemiosmotic mechanism involving Na+-translocating ferredoxin oxidation and a Na+-dependent F1FoATP synthase. All redox enzymes of the pathway have been characterized except the methylenetetrahydrofolate reductase (MTHFR). Here we report the purification of the MTHFR ofA. woodii, which has an unprecedented heterotrimeric structure. The enzyme reduces methylene-THF with NADH. Ferredoxin did not stimulate the reaction; neither was it oxidized or reduced with NADH. Since the last enzyme with a potential role in energy metabolism ofA. woodiihas now been characterized, we can propose a quantitative bioenergetic scheme for acetogenesis from H2plus CO2in the model acetogenA. woodii.


2020 ◽  
Vol 11 ◽  
Author(s):  
Nilanjan Pal Chowdhury ◽  
Lydia Alberti ◽  
Mark Linder ◽  
Volker Müller

Sign in / Sign up

Export Citation Format

Share Document