acetogenic bacteria
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 37)

H-INDEX

32
(FIVE YEARS 3)

Extremophiles ◽  
2021 ◽  
Author(s):  
Florian P. Rosenbaum ◽  
Volker Müller

AbstractAcetogenic bacteria are a polyphyletic group of organisms that fix carbon dioxide under anaerobic, non-phototrophic conditions by reduction of two mol of CO2 to acetyl-CoA via the Wood–Ljungdahl pathway. This pathway also allows for lithotrophic growth with H2 as electron donor and this pathway is considered to be one of the oldest, if not the oldest metabolic pathway on Earth for CO2 reduction, since it is coupled to the synthesis of ATP. How ATP is synthesized has been an enigma for decades, but in the last decade two ferredoxin-dependent respiratory chains were discovered. Those respiratory chains comprise of a cytochrome-free, ferredoxin-dependent respiratory enzyme complex, which is either the Rnf or Ech complex. However, it was discovered already 50 years ago that some acetogens contain cytochromes and quinones, but their role had only a shadowy existence. Here, we review the literature on the characterization of cytochromes and quinones in acetogens and present a hypothesis that they may function in electron transport chains in addition to Rnf and Ech.


2021 ◽  
Author(s):  
Christian-Marco Klask ◽  
Benedikt Jäger ◽  
Largus T Angenent ◽  
Bastian Molitor

For Clostridium ljungdahlii, the RNF complex plays a key role for energy conversion from gaseous substrates such as hydrogen and carbon dioxide. In a previous study, a disruption of RNF-complex genes led to the loss of autotrophy, while heterotrophy was still possible via glycolysis. Furthermore, it was shown that the energy limitation during autotrophy could be lifted by nitrate supplementation, which resulted in an elevated cellular growth and ATP yield. Here, we used CRISPR-Cas12a to delete: 1) the RNF complex-encoding gene cluster rnfCDGEAB; 2) the putative RNF regulator gene rseC; and 3) a gene cluster that encodes for a putative nitrate reductase. The deletion of either rnfCDGEAB or rseC resulted in a complete loss of autotrophy, which could be restored by plasmid-based complementation of the deleted genes. We observed a transcriptional repression of the RNF-gene cluster in the rseC-deletion strain during autotrophy and investigated the distribution of the rseC gene among acetogenic bacteria. To examine nitrate reduction and its connection to the RNF complex, we compared autotrophic and heterotrophic growth of our three deletion strains with either ammonium or nitrate. The rnfCDGEAB- and rseC-deletion strains failed to reduce nitrate as a metabolic activity in non-growing cultures during autotrophy but not during heterotrophy. In contrast, the nitrate reductase deletion strain was able to grow in all tested conditions but lost the ability to reduce nitrate. Our findings highlight the important role of the rseC gene for autotrophy and contribute to understand the connection of nitrate reduction to energy metabolism.


Author(s):  
Felix Leo ◽  
Fabian M. Schwarz ◽  
Kai Schuchmann ◽  
Volker Müller

Abstract In times of global climate change and the fear of dwindling resources, we are facing different considerable challenges such as the replacement of fossil fuel–based energy carriers with the coincident maintenance of the increasing energy supply of our growing world population. Therefore, CO2 capturing and H2 storing solutions are urgently needed. In this study, we demonstrate the production of a functional and biotechnological interesting enzyme complex from acetogenic bacteria, the hydrogen-dependent CO2 reductase (HDCR), in the well-known model organism Escherichia coli. We identified the metabolic bottlenecks of the host organisms for the production of the HDCR enzyme complex. Here we show that the recombinant expression of a heterologous enzyme complex transforms E. coli into a whole-cell biocatalyst for hydrogen-driven CO2 reduction to formate without the need of any external co-factors or endogenous enzymes in the reaction process. This shifts the industrial platform organism E. coli more and more into the focus as biocatalyst for CO2-capturing and H2-storage. Key points • A functional HDCR enzyme complex was heterologously produced in E. coli. • The metabolic bottlenecks for HDCR production were identified. • HDCR enabled E. coli cell to capture and store H2and CO2in the form of formate.


2021 ◽  
Author(s):  
Julia M. Kurth ◽  
Masaru K. Nobu ◽  
Hideyuki Tamaki ◽  
Nadieh de Jonge ◽  
Stefanie Berger ◽  
...  

AbstractMethane-generating archaea drive the final step in anaerobic organic compound mineralization and dictate the carbon flow of Earth’s diverse anoxic ecosystems in the absence of inorganic electron acceptors. Although such Archaea were presumed to be restricted to life on simple compounds like hydrogen (H2), acetate or methanol, an archaeon, Methermicoccus shengliensis, was recently found to convert methoxylated aromatic compounds to methane. Methoxylated aromatic compounds are important components of lignin and coal, and are present in most subsurface sediments. Despite the novelty of such a methoxydotrophic archaeon its metabolism has not yet been explored. In this study, transcriptomics and proteomics reveal that under methoxydotrophic growth M. shengliensis expresses an O-demethylation/methyltransferase system related to the one used by acetogenic bacteria. Enzymatic assays provide evidence for a two step-mechanisms in which the methyl-group from the methoxy compound is (1) transferred on cobalamin and (2) further transferred on the C1-carrier tetrahydromethanopterin, a mechanism distinct from conventional methanogenic methyl-transfer systems which use coenzyme M as final acceptor. We further hypothesize that this likely leads to an atypical use of the methanogenesis pathway that derives cellular energy from methyl transfer (Mtr) rather than electron transfer (F420H2 re-oxidation) as found for methylotrophic methanogenesis.


2021 ◽  
Author(s):  
Flávio C F Baleeiro ◽  
Sabine Kleinsteuber ◽  
Heike Sträuber

Anaerobic fermentation with mixed cultures has gained momentum as a bioprocess for its promise to produce platform carboxylates from low-value biomass feedstocks. Anaerobic fermenters are net carbon emitters and their carboxylate yields are limited by electron donor availability. In a new approach to tackle these two disadvantages, we operated two bioreactors fed with acetate and lactate as a model feedstock while recirculating H2/CO2 to stimulate concomitant autotrophic activity. After 42 days of operation, hydrogenotrophic methanogenesis was predominant and ethylene (≥1.3 kPa) was added to one of the reactors, inhibiting methanogenesis completely and recovering net carbon fixation (0.20 g CO2 L-1 d-1). When methanogenesis was inhibited, exogenous H2 accounted for 17% of the consumed electron donors. Lactate-to-butyrate selectivity was 101% (88% in the control without ethylene) and lactate-to-caproate selectivity was 17% (2.3% in the control). Community analysis revealed that ethylene caused Methanobacterium to be washed out, giving room to acetogenic bacteria. In contrast to 2-bromoethanosulfonate, ethylene is a scalable methanogenesis inhibition strategy that did not collaterally block i-butyrate formation. By favoring the bacterial share of the community to become mixotrophic, the concept offers a way to simultaneously increase selectivity to medium-chain carboxylates and to develop a carbon-fixing chain elongation process.


Author(s):  
Sandra Weitz ◽  
Maria Hermann ◽  
Sonja Linder ◽  
Frank R. Bengelsdorf ◽  
Ralf Takors ◽  
...  

Two different isobutanol synthesis pathways were cloned into and expressed in the two model acetogenic bacteria Acetobacterium woodii and Clostridium ljungdahlii. A. woodii is specialized on using CO2 + H2 gas mixtures for growth and depends on sodium ions for ATP generation by a respective ATPase and Rnf system. On the other hand, C. ljungdahlii grows well on syngas (CO + H2 + CO2 mixture) and depends on protons for energy conservation. The first pathway consisted of ketoisovalerate ferredoxin oxidoreductase (Kor) from Clostridium thermocellum and bifunctional aldehyde/alcohol dehydrogenase (AdhE2) from C. acetobutylicum. Three different kor gene clusters are annotated in C. thermocellum and were all tested. Only in recombinant A. woodii strains, traces of isobutanol could be detected. Additional feeding of ketoisovalerate increased isobutanol production to 2.9 mM under heterotrophic conditions using kor3 and to 1.8 mM under autotrophic conditions using kor2. In C. ljungdahlii, isobutanol could only be detected upon additional ketoisovalerate feeding under autotrophic conditions. kor3 proved to be the best suited gene cluster. The second pathway consisted of ketoisovalerate decarboxylase from Lactococcus lactis and alcohol dehydrogenase from Corynebacterium glutamicum. For increasing the carbon flux to ketoisovalerate, genes encoding ketol-acid reductoisomerase, dihydroxy-acid dehydratase, and acetolactate synthase from C. ljungdahlii were subcloned downstream of adhA. Under heterotrophic conditions, A. woodii produced 0.2 mM isobutanol and 0.4 mM upon additional ketoisovalerate feeding. Under autotrophic conditions, no isobutanol formation could be detected. Only upon additional ketoisovalerate feeding, recombinant A. woodii produced 1.5 mM isobutanol. With C. ljungdahlii, no isobutanol was formed under heterotrophic conditions and only 0.1 mM under autotrophic conditions. Additional feeding of ketoisovalerate increased these values to 1.5 mM and 0.6 mM, respectively. A further increase to 2.4 mM and 1 mM, respectively, could be achieved upon inactivation of the ilvE gene in the recombinant C. ljungdahlii strain. Engineering the coenzyme specificity of IlvC of C. ljungdahlii from NADPH to NADH did not result in improved isobutanol production.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2165
Author(s):  
Jie Dang ◽  
Ning Wang ◽  
Hasan K. Atiyeh

Syngas fermentation is a promising technique to produce biofuels using syngas obtained through gasified biomass and other carbonaceous materials or collected from industrial CO-rich off-gases. The primary components of syngas, carbon monoxide (CO) and hydrogen (H2), are converted to alcohols and other chemicals through an anaerobic fermentation process by acetogenic bacteria. Dissolved CO and H2 concentrations in fermentation media are among the most important parameters for successful and stable operation. However, the difficulties in timely and precise dissolved CO and H2 measurements hinder the industrial-scale commercialization of this technique. The purpose of this article is to provide a comprehensive review of available dissolved CO and H2 measurement methods, focusing on their detection mechanisms, CO and H2 cross interference and operations in syngas fermentation process. This paper further discusses potential novel methods by providing a critical review of gas phase CO and H2 detection methods with regard to their capability to be modified for measuring dissolved CO and H2 in syngas fermentation conditions.


2021 ◽  
Vol 118 (9) ◽  
pp. e2020552118
Author(s):  
Sangrak Jin ◽  
Yale Jeon ◽  
Min Soo Jeon ◽  
Jongoh Shin ◽  
Yoseb Song ◽  
...  

Acetogenic bacteria use cellular redox energy to convert CO2 to acetate using the Wood–Ljungdahl (WL) pathway. Such redox energy can be derived from electrons generated from H2 as well as from inorganic materials, such as photoresponsive semiconductors. We have developed a nanoparticle-microbe hybrid system in which chemically synthesized cadmium sulfide nanoparticles (CdS-NPs) are displayed on the cell surface of the industrial acetogen Clostridium autoethanogenum. The hybrid system converts CO2 into acetate without the need for additional energy sources, such as H2, and uses only light-induced electrons from CdS-NPs. To elucidate the underlying mechanism by which C. autoethanogenum uses electrons generated from external energy sources to reduce CO2, we performed transcriptional analysis. Our results indicate that genes encoding the metal ion or flavin-binding proteins were highly up-regulated under CdS-driven autotrophic conditions along with the activation of genes associated with the WL pathway and energy conservation system. Furthermore, the addition of these cofactors increased the CO2 fixation rate under light-exposure conditions. Our results demonstrate the potential to improve the efficiency of artificial photosynthesis systems based on acetogenic bacteria integrated with photoresponsive nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document