scholarly journals Putative new plant viruses associated with Plasmopara viticola ‐infected grapevine samples

2020 ◽  
Vol 176 (2) ◽  
pp. 180-191 ◽  
Author(s):  
Marco Chiapello ◽  
Julio Rodríguez‐Romero ◽  
Luca Nerva ◽  
Marco Forgia ◽  
Walter Chitarra ◽  
...  
2015 ◽  
Vol 28 (11) ◽  
pp. 1227-1236 ◽  
Author(s):  
Christelle Guillier ◽  
Magdalena Gamm ◽  
Géraldine Lucchi ◽  
Caroline Truntzer ◽  
Delphine Pecqueur ◽  
...  

Stomata remain abnormally opened and unresponsive to abscisic acid in grapevine leaves infected by downy mildew. This deregulation occurs from 3 days postinoculation and increases concomitantly with leaf colonization by the pathogen. Using epidermal peels, we demonstrated that the active compound involved in this deregulation is located in the apoplast. Biochemical assays showed that the active compound present in the apoplastic fluids isolated from Plasmopara viticola–infected grapevine leaves (IAF) is a CysCys bridge-independent, thermostable and glycosylated protein. Fractionation guided assays based on chromatography coupled to stomatal response and proteomic analysis allowed the identification of both plant and pathogen proteins in the active fraction obtained from IAF. Further in silico analysis and discriminant filtrations based on the comparison between predictions and experimental indications lead to the identification of two Vitis vinifera proteins as candidates for the observed stomatal deregulation.


2011 ◽  
Vol 24 (9) ◽  
pp. 1061-1073 ◽  
Author(s):  
Magdalena Gamm ◽  
Marie-Claire Héloir ◽  
Richard Bligny ◽  
Nathalie Vaillant-Gaveau ◽  
Sophie Trouvelot ◽  
...  

The oomycete Plasmopara viticola is responsible for downy mildew, a severe grapevine disease. In infected grapevine leaves, we have observed an abnormal starch accumulation at the end of the dark period, suggesting modifications in starch metabolism. Therefore, several complementary approaches, including transcriptomic analyses, measurements of enzyme activities, and sugar quantification, were performed in order to investigate and to understand the effects of P. viticola infection on leaf starch and—to a larger extent—carbohydrate metabolism. Our results indicate that starch accumulation is associated with an increase in ADP-glucose pyrophosphorylase (AGPase) activity and modifications in the starch degradation pathway, especially an increased α-amylase activity. Together with these alterations in starch metabolism, we have observed an accumulation of hexoses, an increase in invertase activity, and a reduction of photosynthesis, indicating a source-to-sink transition in infected leaf tissue. Additionally, we have measured an accumulation of the disaccharide trehalose correlated to an increased trehalase gene expression and enzyme activity. Altogether, these results highlight a dramatic alteration of carbohydrate metabolism correlated with later stages of P. viticola development in leaves.


Author(s):  
N.C. Lyon ◽  
W. C. Mueller

Schumacher and Halbsguth first demonstrated ectodesmata as pores or channels in the epidermal cell walls in haustoria of Cuscuta odorata L. by light microscopy in tissues fixed in a sublimate fixative (30% ethyl alcohol, 30 ml:glacial acetic acid, 10 ml: 65% nitric acid, 1 ml: 40% formaldehyde, 5 ml: oxalic acid, 2 g: mecuric chloride to saturation 2-3 g). Other workers have published electron micrographs of structures transversing the outer epidermal cell in thin sections of plant leaves that have been interpreted as ectodesmata. Such structures are evident following treatment with Hg++ or Ag+ salts and are only rarely observed by electron microscopy. If ectodesmata exist without such treatment, and are not artefacts, they would afford natural pathways of entry for applied foliar solutions and plant viruses.


Author(s):  
K. Pegg-Feige ◽  
F. W. Doane

Immunoelectron microscopy (IEM) applied to rapid virus diagnosis offers a more sensitive detection method than direct electron microscopy (DEM), and can also be used to serotype viruses. One of several IEM techniques is that introduced by Derrick in 1972, in which antiviral antibody is attached to the support film of an EM specimen grid. Originally developed for plant viruses, it has recently been applied to several animal viruses, especially rotaviruses. We have investigated the use of this solid phase IEM technique (SPIEM) in detecting and identifying enteroviruses (in the form of crude cell culture isolates), and have compared it with a modified “SPIEM-SPA” method in which grids are coated with protein A from Staphylococcus aureus prior to exposure to antiserum.


Author(s):  
M. F. Miller ◽  
A. R. Rubenstein

Studies of rotavirus particles in humans, monkeys and various non-primates with acute gastroenteritis have involved detection of virus in fecal material by electron microscopy. The EM techniques most commonly employed have been the conventional negative staining (Fig. 1) and immune aggregation (Fig. 2) procedures. Both methods are somewhat insensitive and can most reliably be applied to samples containing large quantities of virus either naturaLly or as a result of concentration by ultracentrifugation. The formation of immune complexes by specific antibody in the immune aggregation procedures confirms the rotavirus diagnosis, but the number of particles per given microscope field is effectively reduced by the aggregation process. In the present communication, we describe use of an on-grid immunoelectron microscopic technique in which rotavirus particles are mounted onto microscope grids that were pre-coated with specific antibody. The technique is a modification of a method originalLy introduced by Derrick (1) for studies of plant viruses.


1944 ◽  
Vol 78 (779) ◽  
pp. 557-559
Author(s):  
J. Arthur Herrick
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document