scholarly journals Toward the Identification of Two Glycoproteins Involved in the Stomatal Deregulation of Downy Mildew–Infected Grapevine Leaves

2015 ◽  
Vol 28 (11) ◽  
pp. 1227-1236 ◽  
Author(s):  
Christelle Guillier ◽  
Magdalena Gamm ◽  
Géraldine Lucchi ◽  
Caroline Truntzer ◽  
Delphine Pecqueur ◽  
...  

Stomata remain abnormally opened and unresponsive to abscisic acid in grapevine leaves infected by downy mildew. This deregulation occurs from 3 days postinoculation and increases concomitantly with leaf colonization by the pathogen. Using epidermal peels, we demonstrated that the active compound involved in this deregulation is located in the apoplast. Biochemical assays showed that the active compound present in the apoplastic fluids isolated from Plasmopara viticola–infected grapevine leaves (IAF) is a CysCys bridge-independent, thermostable and glycosylated protein. Fractionation guided assays based on chromatography coupled to stomatal response and proteomic analysis allowed the identification of both plant and pathogen proteins in the active fraction obtained from IAF. Further in silico analysis and discriminant filtrations based on the comparison between predictions and experimental indications lead to the identification of two Vitis vinifera proteins as candidates for the observed stomatal deregulation.

Proceedings ◽  
2019 ◽  
Vol 29 (1) ◽  
pp. 34
Author(s):  
Camelia Ungureanu ◽  
Liliana Cristina Soare ◽  
Diana Vizitiu ◽  
Mirela Calinescu ◽  
Irina Fierascu ◽  
...  

In order to test some biofungicides, the isolation of Plasmopara viticola was carried out.Plasmopara viticola is a fungus that causes the grapevine downy mildew disease [...]


2008 ◽  
Vol 65 (spe) ◽  
pp. 65-70 ◽  
Author(s):  
Anna Dalla Marta ◽  
Valentina Di Stefano ◽  
Zoran G. Cerovic ◽  
Giovanni Agati ◽  
Simone Orlandini

Solar radiation plays an important role in the development of some fungal diseases due to its direct action on the microorganisms and also its indirect effect on the production of specific plant compounds. This experiment examined the effect of two light environments (100% and 35% of full strength) on the polyphenolic content of grapevine leaves and quantified their relation to resistance to downy mildew (Plasmopara viticola). Leaf epidermal polyphenolic contents were non-destructively measured during the growing season 2006 using the Dualex chlorophyll fluorescence-based portable leaf-clip. The experimental design consisted of six parcels of 30 vines and measurements were performed on the 12 central vines. The leaves were inoculated with a sporangia suspension containing 50,000 sporangia of P. viticola per mL and the disease severity was assessed after the appearance of symptoms. Leaves maintained at 100% sun had high polyphenolic content and significantly lower disease severity compared to leaves under shading nets. These results indicate an inverse relationship between produced polyphenolics and downy mildew severity.


2011 ◽  
Vol 24 (9) ◽  
pp. 1061-1073 ◽  
Author(s):  
Magdalena Gamm ◽  
Marie-Claire Héloir ◽  
Richard Bligny ◽  
Nathalie Vaillant-Gaveau ◽  
Sophie Trouvelot ◽  
...  

The oomycete Plasmopara viticola is responsible for downy mildew, a severe grapevine disease. In infected grapevine leaves, we have observed an abnormal starch accumulation at the end of the dark period, suggesting modifications in starch metabolism. Therefore, several complementary approaches, including transcriptomic analyses, measurements of enzyme activities, and sugar quantification, were performed in order to investigate and to understand the effects of P. viticola infection on leaf starch and—to a larger extent—carbohydrate metabolism. Our results indicate that starch accumulation is associated with an increase in ADP-glucose pyrophosphorylase (AGPase) activity and modifications in the starch degradation pathway, especially an increased α-amylase activity. Together with these alterations in starch metabolism, we have observed an accumulation of hexoses, an increase in invertase activity, and a reduction of photosynthesis, indicating a source-to-sink transition in infected leaf tissue. Additionally, we have measured an accumulation of the disaccharide trehalose correlated to an increased trehalase gene expression and enzyme activity. Altogether, these results highlight a dramatic alteration of carbohydrate metabolism correlated with later stages of P. viticola development in leaves.


OENO One ◽  
1998 ◽  
Vol 32 (3) ◽  
pp. 121
Author(s):  
Simone Orlandini ◽  
Alberto Giuntoli

<p style="text-align: justify;">A correct approach to crop protection must consider the effect of disease on plant activity and its impact in terms of economical losses. These evaluations can drive the farmers to a quantification of plant responses to pathogen attack and to the application of economical thresholds for fungicide sprays. For grapevine (Vitis vùlÎfera L.), the knowledge of plant responses to disease is still very limited independently from the level of investigation (physiology, growth, development, etc.). The aim of this research was to evaluate the impact of downy mildew (Plasmopara viticola Berl. et De Toni) on grapevine photosynthesis under controlled and field conditions. Downy mildew was shown to reduce to a negative value net photosynthesis in the oilspot, as well as to affect the physiology of gas exchanges of the tissues surrounding the oilspot. The daily trend under field condition pointed out a normal trend of assimilation, without differences between green portions of healthy and diseased leaves. The consequences on source-sink relationships were discussed, as well as the relation between visible symptoms and physiological alterations.</p>


2022 ◽  
Vol 12 ◽  
Author(s):  
Ying Wang ◽  
Xiao Cao ◽  
Yulei Han ◽  
Xing Han ◽  
Zhilei Wang ◽  
...  

Downy mildew is a major threat to viticulture, leading to severe yield loss. The use of traditional copper-based fungicides is effective, but has adverse effects on the environment and human health, making it urgent to develop an environmentally friendly disease management program. Multi-functional kaolin particle film (KPF) is promising as an effective and safer treatment strategy, since this material lacks chemically active ingredients. In this study, ability of Kaolin particle film (KPF) pretreatment to protect grapevine leaves from Plasmopara viticola was tested and the mode of action of KPF was analyzed. KPF application reduced the disease severity and the development of intercellular hyphae. Additionally, there was reduced accumulation of H2O2 and malondialdehyde (MDA) with pretreatment. The observation of ultrastructure on the leaf surface showed KPF deposition and stomatal obstruction, indicating that KPF protected plants against disease by preventing the adhesion of pathogens to the leaf surface and blocking invasion through the stomata. KPF pretreatment also activated host defense responses, as evidenced by increased activities of anti-oxidative enzymes [superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)] and defense-related enzymes [phenylalanine ammonia-lyase (PAL), chitinases, and β-1,3-glucanases], increased phytohormone signals [abscisic acid (ABA), salicylic acid (SA), and jasmonic acid (JA)] and the up-regulation of defense genes related to plant defense. Overall, these results demonstrate that KPF treatment counters grapevine downy mildew by protecting leaves and enhancing plant defense responses.


2020 ◽  
Vol 47 (6) ◽  
pp. 398-408
Author(s):  
Sonam Tulsyan ◽  
Showket Hussain ◽  
Balraj Mittal ◽  
Sundeep Singh Saluja ◽  
Pranay Tanwar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document