scholarly journals Vascular smooth muscle cell‐specific progerin expression in a mouse model of Hutchinson–Gilford progeria syndrome promotes arterial stiffness: Therapeutic effect of dietary nitrite

Aging Cell ◽  
2019 ◽  
Vol 18 (3) ◽  
pp. e12936 ◽  
Author(s):  
Lara del Campo ◽  
Amanda Sánchez‐López ◽  
Mercedes Salaices ◽  
Ryan A. von Kleeck ◽  
Elba Expósito ◽  
...  



Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2252
Author(s):  
Rosa M. Nevado ◽  
Magda R. Hamczyk ◽  
Pilar Gonzalo ◽  
María Jesús Andrés-Manzano ◽  
Vicente Andrés

Hutchinson–Gilford progeria syndrome (HGPS) is among the most devastating of the laminopathies, rare genetic diseases caused by mutations in genes encoding nuclear lamina proteins. HGPS patients age prematurely and die in adolescence, typically of atherosclerosis-associated complications. The mechanisms of HGPS-related atherosclerosis are not fully understood due to the scarcity of patient-derived samples and the availability of only one atheroprone mouse model of the disease. Here, we generated a new atherosusceptible model of HGPS by crossing progeroid LmnaG609G/G609G mice, which carry a disease-causing mutation in the Lmna gene, with Ldlr−/− mice, a commonly used preclinical atherosclerosis model. Ldlr−/−LmnaG609G/G609G mice aged prematurely and had reduced body weight and survival. Compared with control mice, Ldlr−/−LmnaG609G/G609G mouse aortas showed a higher atherosclerosis burden and structural abnormalities typical of HGPS patients, including vascular smooth muscle cell depletion in the media, adventitial thickening, and elastin structure alterations. Atheromas of Ldlr−/−LmnaG609G/G609G mice had features of unstable plaques, including the presence of erythrocytes and iron deposits and reduced smooth muscle cell and collagen content. Ldlr−/−LmnaG609G/G609G mice faithfully recapitulate vascular features found in patients and thus provide a new tool for studying the mechanisms of HGPS-related atherosclerosis and for testing therapies.



1990 ◽  
Vol 63 (02) ◽  
pp. 291-297 ◽  
Author(s):  
Herm-Jan M Brinkman ◽  
Marijke F van Buul-Worteiboer ◽  
Jan A van Mourik

SummaryWe observed that the growth of human umbilical arterysmooth muscle cells was inhibited by the phospholipase A2 inhibitors p-bromophenacylbromide and mepacrine. Thesefindings suggest that fatty acid metabolism might be integrated in the control mechanism of vascular smooth muscle cell proliferation. To identify eicosanoids possibly involved in this process, we studied both the metabolism of arachidonic acid of these cells in more detail and the effect of certain arachidonic acid metabolites on smooth muscle cells growth. We found no evidence for the conversion of arachidonic acid via the lipoxygenase pathway. In contrast, arachidonic acid was rapidly converted via the cyclooxy-genase pathway. The following metabolites were identified: prostaglandin E2 (PGE2), 6-keto-prostaglandin F1α (6-k-PGF1α), prostaglandin F2α (PGF2α), 12-hydroxyheptadecatrienoic acid (12-HHT) and 11-hydroxyeicosatetetraenoic acid (11-HETE). PGE2 was the major metabolite detected. Arachidonic acid metabolites were only found in the culture medium, not in the cell. After synthesis, 11-HETE was cleared from the culture medium. We have previously reported that PGE2 inhibits the serum-induced [3H]-thymidine incorporation of growth-arrested human umbilical artery smooth muscle cells. Here we show that also 11-HETEexerts this inhibitory property. Thus, our data suggeststhat human umbilical artery smooth muscle cells convert arachidonic acid only via the cyclooxygenase pathway. Certain metabolites produced by this pathway, including PGE2 and 11-HETE, may inhibit vascular smooth muscle cell proliferation.





Sign in / Sign up

Export Citation Format

Share Document