Does the addition of potassium nitrate to carbamide peroxide gel reduce sensitivity during at‐home bleaching?

2019 ◽  
Vol 65 (1) ◽  
pp. 70-82
Author(s):  
AO Costacurta ◽  
PVM Kunz ◽  
RC Silva ◽  
LM Wambier ◽  
LF Cunha ◽  
...  
2017 ◽  
Vol 42 (4) ◽  
pp. 347-356 ◽  
Author(s):  
J Perdigão ◽  
VQ Lam ◽  
BG Burseth ◽  
C Real

SUMMARY This clinical report illustrates a conservative technique to mask enamel discolorations in maxillary anterior teeth caused by hypomineralization associated with enamel fluorosis and subsequent direct resin composite to improve the anterior esthetics. The treatment consisted of at-home whitening with 10% carbamide peroxide gel with potassium nitrate and sodium fluoride in a custom-fitted tray to mask the brown-stained areas, followed by resin infiltration to mask the white spot areas. An existing resin composite restoration in the maxillary right central incisor was subsequently replaced after completion of the whitening and resin infiltration procedures, whereas the two misaligned and rotated maxillary lateral incisors were built up with direct resin composite restorations to provide the illusion of adequate arch alignment, as the patient was unable to use orthodontic therapy.


2018 ◽  
Vol 29 (6) ◽  
pp. 541-546 ◽  
Author(s):  
Caroline Solda ◽  
Fernando Branco Barletta ◽  
José Roberto Vanni ◽  
Paula Lambert ◽  
Marcus Vinícius Reis Só ◽  
...  

Abstract The present study assessed oxygen saturation (SaO2) levels before, during, and after at-home bleaching treatment in the pulps of healthy maxillary central incisors. SaO2 levels were measured in 136 healthy maxillary central incisors using a pulse oximeter. The bleaching protocol consisted of 10% carbamide peroxide gel placed in individual trays and used for four hours daily for 14 days. SaO2 levels were assessed before bleaching (T0), immediately after the first session (T1), on the 7th day of treatment (T2), on the 15th day (the day following the last session) (T3), and 30 days after completion of the bleaching protocol (T4). Data were statistically analyzed using generalized estimating equations (GEE), Student’s t test (p<0.05) and Pearson’s correlation. Mean pulp SaO2 levels were 85.1% at T0, 84.9% at T1, 84.7% at T2, 84.3% at T3, and 85.0% at T4. Gradual reductions in SaO2 levels were observed, with significant differences (p<0.001) during the course of home bleaching treatment. However, 30 days after the end of the bleaching protocol, SaO2 levels returned to baseline levels. Home bleaching caused a reversible transient decrease in SaO2 levels in the pulps.


2007 ◽  
Vol 21 (2) ◽  
pp. 170-175 ◽  
Author(s):  
José Augusto Rodrigues ◽  
Glauco Paulo Felício Oliveira ◽  
Cristiane Mariote Amaral

Dental bleaching occurs due to an oxidation reaction between the bleaching agents and the macromolecules of pigments in the teeth. This reaction is unspecific and the peroxides can also affect the dental matrix causing mineral loss. On the other hand, recent studies have suggested that the thickener agent carbopol can also cause mineral loss. Thus, the objective of this study was to evaluate in vitro the effect of at-home dental bleaching on dental enamel microhardness after the use of bleaching agents with and without carbopol as a thickener agent. Bovine dental slabs with 3 x 3 x 3 mm were obtained, sequentially polished, and randomly divided into 4 groups according to the experimental treatment: G1: 2% carbopol; G2: 10% carbamide peroxide with carbopol; G3: carbowax; G4: 10% carbamide peroxide with poloxamer. Bleaching was performed daily for 4 weeks, immersed in artificial saliva. Enamel microhardness values were obtained before the treatment (T0) and 7 (T1), 14 (T2), 21 (T3), 28 (T4), and 42 (T5) days after the beginning of the treatment. ANOVA and Tukey's test revealed statistically significant differences only for the factor Time (F = 5.48; p < 0.01). All bleaching and thickener agents caused no alterations on the enamel microhardness.


10.2341/07-10 ◽  
2007 ◽  
Vol 32 (6) ◽  
pp. 549-555 ◽  
Author(s):  
B. A. Matis ◽  
M. A. Cochran ◽  
G. J. Eckert ◽  
J. I. Matis

Clinical Relevance Under the conditions of this study, 15% carbamide peroxide with potassium nitrate and fluoride exhibited greater bleaching potential but exhibited no difference in sensitivity compared to 16% carbamide peroxide with amorphous calcium phosphate.


Author(s):  
Marcela Alvarez FERRETTI ◽  
Matheus KURY ◽  
Beatriz Curvello de MENDONÇA ◽  
Marcelo GIANNINI ◽  
Vanessa CAVALLI ◽  
...  

ABSTRACT Tooth bleaching is one of the most conservative aesthetic techniques. At-home and in-office bleaching may be performed, as well as the combination of both techniques. As this combination may be done in different manners, distinct orders of combinations were proposed in this report. A 24 years-old man, whose upper central incisor and canine shades were A2 and A3 respectively, was initially treated by chair-side with 40-min application of 40% hydrogen peroxide (HP) for two sessions. Afterwards, an two-week overnight at-home bleaching was performed with 10% carbamide peroxide (CP). The shade of upper central incisors changed to 1M1 and canine was B1. Conversely, a 30 years-old woman was firstly conducted with at-home bleaching (overnight 4-weeks 10% CP) and, subsequently, with a single appointment of in-office bleaching for 45 minutes (35% HP). The shade of her upper central incisor changed from A1 to 0.5M1 and the upper canine from A3 to B1. The VITA classical (A1-D4) shade guide and VITA Bleached guide 3D-MASTER were used to determine the tooth color during the treatments. In both bleaching treatments, patients reported no significant tooth sensitivity and the final outcomes met their expectation.


2021 ◽  
Author(s):  
CC Pavani ◽  
LR Vieira ◽  
TC Schott ◽  
D Sundfeld ◽  
NIP Pini ◽  
...  

SUMMARY Adequate removal of residual bonded materials from the enamel surface after orthodontic bracket debonding is critical, since any remaining composite may compromise enamel surface morphology and esthetics. The following clinical case reports present the association of at-home dental bleaching using 10% carbamide peroxide and the removal of residual bonded material using a super fine, tapered diamond bur followed by the use of an enamel microabrasion product after orthodontic bracket debonding. The proposed treatment considerably improved the esthetics and successfully removed the grooves created during the removal of the bonding composite, resulting in a smooth enamel surface.


2011 ◽  
Vol 36 (5) ◽  
pp. 529-536 ◽  
Author(s):  
FY Cakir ◽  
Y Korkmaz ◽  
E Firat ◽  
SS Oztas ◽  
S Gurgan

SUMMARY Purpose To determine the change in the chemical composition of enamel and dentin as well as to evaluate the differences in surface texture of the same dental hard tissues following three at-home bleaching systems in vitro. Methods Sixty extracted intact human anterior teeth were used in this study. Thirty teeth were used as samples for enamel, and the buccal surfaces of the remaining 30 teeth were abraded and used as dentin samples. Prior to bleaching treatments, calcium (Ca), phosphorus (P), potassium (K), sodium (Na), magnesium (Mg), fluoride (F), and oxygen (O) levels of each sample were measured using an energy dispersive spectrometer. The teeth were then randomly allocated into three groups according to the bleaching system used, as follows: GI, 10% carbamide peroxide (CP); GII, 20% CP; GIII, and 35% CP. Following the bleaching treatments, Ca, P, K, Na, Mg, F, and O measurements were repeated. The surface configurations were examined using scanning electron microscopy (SEM). The data were analyzed using Wilcoxon signed rank and Kruskal-Wallis tests followed by the Dunn test. Results All three bleaching systems tested caused similar changes in the chemical composition of enamel and dentin. Bleaching systems decreased Ca and K, while F and O levels increased in enamel. In dentin, Ca, P, and K levels decreased; however, Na, F, and O levels increased. SEM observations revealed no deleterious effect on enamel and dentin. Conclusion The use of home bleaching agents could affect the chemical composition of dental hard tissues, whereas the change in the chemical composition of enamel and dentin was not affected by the CP concentration of the bleaching systems used.


2018 ◽  
Vol 6 (4) ◽  
pp. 52 ◽  
Author(s):  
Giacomo Oldoini ◽  
Antonino Bruno ◽  
Anna Genovesi ◽  
Luca Parisi

Background. Tooth bleaching is the most frequently employed whitening procedure in clinics. The major side effect of tooth bleaching is dental sensitivity during and after the treatment. Here, we evaluated whether the administration of amorphous calcium phosphate (ACP), during in-office and at-home procedures may impact on dental sensitivity. Methods. Eighty patients, responding to the study requirements were enrolled according to the following criteria. Group 1 (n = 40), received in-office, 10% ACP prior to 30% professional hydrogen peroxide application. The whitening procedure continued at home using 10% carbamide peroxide with 15% ACP for 15 days. Group 2 (n = 40) received only 30% hydrogen peroxide application and continued the whitening procedures at home, using 10% carbamide hydroxide, without ACP- Casein phosphopeptides (CPP), for 15 days. Dental sensitivity was recorded with a visual analogue scale (VAS) at baseline, immediately after, and at 15 days after treatment in the two groups. Results. We observed that patients receiving ACP in the bleaching mixture experienced decreased dental sensitivity (* p ≤ 0.05), as detected by VAS scale analysis immediately following the procedures. Patients receiving ACP-CPP during at-home procedures showed a statistically significant (*** p ≤ 0.0001) reduction of dental sensitivity. Conclusions. We demonstrated that ACP-CPP administration, while exerting the same whitening effects as in control subjects receiving potassium fluoride (PF), had an impact on the reduction of dental sensitivity, improving patient compliance.


2006 ◽  
Vol 7 (1) ◽  
pp. 25-34 ◽  
Author(s):  
Luís Roberto Marcondes Martins ◽  
Claudia Cia Worschech ◽  
José Augusto Rodrigues ◽  
Gláucia Maria Bovi Ambrosano

Abstract During tooth bleaching abrasive dentifrices might change the outer superficial enamel. The aim of this in vitro study was to evaluate the roughness of human enamel exposed to a 10% carbamide peroxide bleaching agent at different times and submitted to different superficial cleaning treatments. The study consisted of 60 sound human enamel slabs, randomly assigned to different treatment groups: G1 - not brushed; G2 - brushed with a fluoride abrasive dentifrice; G3 - brushed with a non-fluoride abrasive dentifrice; and G4 - brushed without a dentifrice. There were 15 enamel slabs per group. Slabs of molar teeth were obtained and sequentially polished with sandpaper and abrasive pastes. A perfilometer was used to obtain the mean of Ra value on the surface of each specimen to initial and experimental times. Bleaching was performed on the enamel surface for six hours daily. After that, each slab received a cleaning surface treatment and was stored in artificial saliva. Analysis of variance (ANOVA) and Tukey's HSD hoc analysis (α =0.05) revealed significant differences in roughness values over time for enamel bleached and treated with different superficial cleaning methods. G1 and G4 showed no significant differences in roughness over time, G2 and G3 showed a significant increase in the surface roughness values. This in vitro investigation showed the sole use of 10% carbamide peroxide did not alter the enamel surface roughness, but the cleaning treatments that employed the use of brushing with abrasive dentifrices resulted in a significant increase of enamel surface roughness. Citation Worschech CC, Rodrigues JA, Martins LRM, Ambrosano GMB. Brushing Effect of Abrasive Dentifrices during At-home Bleaching with 10% Carbamide Peroxide on Enamel Surface Roughness. J Contemp Dent Pract 2006 February;(7)1:025-034.


Sign in / Sign up

Export Citation Format

Share Document