Ecophysiological traits of invasive alien Acacia cyclops compared to co-occuring native species in Strandveld vegetation of the Cape Floristic Region

2019 ◽  
Vol 45 (1) ◽  
pp. 48-59
Author(s):  
Taryn L. Morris ◽  
Nichole N. Barger ◽  
Michael D. Cramer

2013 ◽  
Vol 157 ◽  
pp. 196-203 ◽  
Author(s):  
Michelle R. Gibson ◽  
Anton Pauw ◽  
David M. Richardson


Koedoe ◽  
2017 ◽  
Vol 59 (1) ◽  
Author(s):  
Jeremy M. Shelton ◽  
N. Dean Impson ◽  
Shaun Graham ◽  
Karen J. Esler

The Berg–Breede River whitefish, Barbus andrewi, an endangered Cape Floristic Region endemic, was once widespread in both the Berg and Breede River catchments. However, its distribution has been strongly reduced, apparently by human-related activities, over the last century, and the Hex River now contains one of the last recruiting populations within its native range. This population was last surveyed by Christie who found that the species occurred in six pools over a 9-km stretch of the upper Hex River. We re-surveyed fish populations at Christie’s sites in 2015 to evaluate differences in the fish community between 2002 and 2015. Our data indicated that the distribution of B. andrewi in the Hex River has declined from six to four pools and that its density in the study area in 2015 (0.57 fish per 100 m2 ± 0.31 fish per 100 m2 ) was more than fivefold lower than that recorded in 2002 (3.39 fish per 100 m2 ± 1.40 fish per 100 m2 ). Moreover, small size classes of B. andrewi (< 10 cm) were largely absent in 2015, indicating recruitment failure in recent years. Habitat degradation, exacerbated by a severe flood in 2008, and recent invasions by predatory non-native fishes (smallmouth bass, Micropterus dolomieu and sharptooth catfish, Clarias gariepinus) are identified as likely causes of this decline. Cape kurper, Sandelia capensis, another native species, was relatively common in 2002 but not recorded in 2015, whereas the density of native Breede River redfin, Pseudobarbus burchelli, was higher in 2015 than in 2002. Urgent conservation actions including managing non-native fish invasions and mitigating agricultural impacts on aquatic habitat are required to prevent further decline, and possible extirpation, of the Hex River population of B. andrewi.Conservation implications: Urgent conservation actions including preventing further increases in the abundance and distribution of non-native fishes, and improving habitat and water quality through mitigating agricultural impacts, are required to prevent further decline, and possible extirpation, of the Hex River population of B. andrewi.



2020 ◽  
Vol 146 ◽  
pp. 278-286 ◽  
Author(s):  
María Zunzunegui ◽  
Elena Ruiz-Valdepeñas ◽  
Maria A. Sert ◽  
Mari Cruz Díaz-Barradas ◽  
Juan B. Gallego-Fernández


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Marco A. Yáñez ◽  
Benita González ◽  
Sergio E. Espinoza ◽  
Hermine Vogel ◽  
Ursula Doll

AbstractThe domestication of forest species has traditionally relied on productivity issues. However, today there are concerns about the potential responses of natural populations and new cultivars to extreme climatic conditions derived from climate change and how to incorporate this knowledge into the domestication programs. Aristotelia chilensis (Molina) Stuntz (‘Maqui’) is a widely distributed native species in Chile. Its berry is considered a “super fruit” with an increasing interest in the food industry. This study investigated the phenotypic variation of growth, fruit, and ecophysiological traits of 20 A. chilensis clones originated from six provenances along the latitudinal gradient and established in a common-garden experiment in the Mediterranean zone of central Chile (center part of the species distribution). Differences among provenances were observed for most of the  traits under study, especially between the northern and southernmost provenances (i.e., San Fernando versus Entre Lagos). Northern provenances showed higher development of vegetative tissue and fruit yield but lower intrinsic water use efficiency (WUEint) compared with southern ones. Clonal variation within provenances was found significant for the ripening index, WUEint, and fruit number and weight but not significant for traits related to the crown and leaf morphology. A genetic differentiation due to latitudinal cline was not evident in this study, but differences among provenances suggest local adaptation for some traits. The genotypic variation in productive traits must be considered in the outgoing domestication of the species and future selection programs.



2019 ◽  
Author(s):  
Grant Duffy ◽  
Jasmine R Lee

Warming across ice-covered regions will result in changes to both the physical and climatic environment, revealing new ice-free habitat and new climatically suitable habitats for non-native species establishment. Recent studies have independently quantified each of these aspects in Antarctica, where ice-free areas form crucial habitat for the majority of terrestrial biodiversity. Here we synthesise projections of Antarctic ice-free area expansion, recent spatial predictions of non-native species risk, and the frequency of human activities to quantify how these facets of anthropogenic change may interact now and in the future. Under a high-emissions future climate scenario, over a quarter of ice-free area and over 80 % of the ~14 thousand km2 of newly uncovered ice-free area could be vulnerable to invasion by one or more of the modelled non-native species by the end of the century. Ice-free areas identified as vulnerable to non-native species establishment were significantly closer to human activity than unsuitable areas were. Furthermore, almost half of the new vulnerable ice-free area is within 20 km of a site of current human activity. The Antarctic Peninsula, where human activity is heavily concentrated, will be at particular risk. The implications of this for conservation values of Antarctica and the management efforts required to mitigate against it are in need of urgent consideration.



2020 ◽  
Vol 637 ◽  
pp. 195-208 ◽  
Author(s):  
EM DeRoy ◽  
R Scott ◽  
NE Hussey ◽  
HJ MacIsaac

The ecological impacts of invasive species are highly variable and mediated by many factors, including both habitat and population abundance. Lionfish Pterois volitans are an invasive marine species which have high reported detrimental effects on prey populations, but whose effects relative to native predators are currently unknown for the recently colonized eastern Gulf of Mexico. We used functional response (FR) methodology to assess the ecological impact of lionfish relative to 2 functionally similar native species (red grouper Epinephelus morio and graysby grouper Cephalopholis cruentata) foraging in a heterogeneous environment. We then combined the per capita impact of each species with their field abundance to obtain a Relative Impact Potential (RIP). RIP assesses the broader ecological impact of invasive relative to native predators, the magnitude of which predicts community-level negative effects of invasive species. Lionfish FR and overall consumption rate was intermediate to that of red grouper (higher) and graysby grouper (lower). However, lionfish had the highest capture efficiency of all species, which was invariant of habitat. Much higher field abundance of lionfish resulted in high RIPs relative to both grouper species, demonstrating that the ecological impact of lionfish in this region will be driven mainly by high abundance and high predator efficiency rather than per capita effect. Our comparative study is the first empirical assessment of lionfish per capita impact and RIP in this region and is one of few such studies to quantify the FR of a marine predator.



2009 ◽  
Vol 27 (1) ◽  
pp. 14-15
Author(s):  
M.-Y. Wu ◽  
D. Kalma
Keyword(s):  
New York ◽  




Sign in / Sign up

Export Citation Format

Share Document