scholarly journals Paving the way of systems biology and precision medicine in allergic diseases: the Me DALL success story

Allergy ◽  
2016 ◽  
Vol 71 (11) ◽  
pp. 1513-1525 ◽  
Author(s):  
J. Bousquet ◽  
J. M. Anto ◽  
M. Akdis ◽  
C. Auffray ◽  
T. Keil ◽  
...  
2020 ◽  
Vol 28 ◽  
Author(s):  
Ilaria Granata ◽  
Mario Manzo ◽  
Ari Kusumastuti ◽  
Mario R Guarracino

Purpose: Systems biology and network modeling represent, nowadays, the hallmark approaches for the development of predictive and targeted-treatment based precision medicine. The study of health and disease as properties of the human body system allows the understanding of the genotype-phenotype relationship through the definition of molecular interactions and dependencies. In this scenario, metabolism plays a central role as its interactions are well characterized and it is considered an important indicator of the genotype-phenotype associations. In metabolic systems biology, the genome-scale metabolic models are the primary scaffolds to integrate multi-omics data as well as cell-, tissue-, condition-specific information. Modeling the metabolism has both investigative and predictive values. Several methods have been proposed to model systems, which involve steady-state or kinetic approaches, and to extract knowledge through machine and deep learning. Method: This review collects, analyzes, and compares the suitable data and computational approaches for the exploration of metabolic networks as tools for the development of precision medicine. To this extent, we organized it into three main sections: "Data and Databases", "Methods and Tools", and "Metabolic Networks for medicine". In the first one, we have collected the most used data and relative databases to build and annotate metabolic models. In the second section, we have reported the state-of-the-art methods and relative tools to reconstruct, simulate, and interpret metabolic systems. Finally, we have reported the most recent and innovative studies which exploited metabolic networks for the study of several pathological conditions, not only those directly related to the metabolism. Conclusion: We think that this review can be a guide to researchers of different disciplines, from computer science to biology and medicine, in exploring the power, challenges and future promises of the metabolism as predictor and target of the so-called P4 medicine (predictive, preventive, personalized and participatory).


2021 ◽  
Vol 23 (7) ◽  
Author(s):  
Sally Yu Shi ◽  
Xin Luo ◽  
Tracy M. Yamawaki ◽  
Chi-Ming Li ◽  
Brandon Ason ◽  
...  

Abstract Purpose of Review Cardiac fibroblast activation contributes to fibrosis, maladaptive remodeling and heart failure progression. This review summarizes the latest findings on cardiac fibroblast activation dynamics derived from single-cell transcriptomic analyses and discusses how this information may aid the development of new multispecific medicines. Recent Findings Advances in single-cell gene expression technologies have led to the discovery of distinct fibroblast subsets, some of which are more prevalent in diseased tissue and exhibit temporal changes in response to injury. In parallel to the rapid development of single-cell platforms, the advent of multispecific therapeutics is beginning to transform the biopharmaceutical landscape, paving the way for the selective targeting of diseased fibroblast subpopulations. Summary Insights gained from single-cell technologies reveal critical cardiac fibroblast subsets that play a pathogenic role in the progression of heart failure. Combined with the development of multispecific therapeutic agents that have enabled access to previously “undruggable” targets, we are entering a new era of precision medicine.


2021 ◽  
pp. 135910452110481
Author(s):  
Simon R. Wilkinson

The scientific basis for practice in child psychiatry has developed apace. And has thrown up several quandries for an accepted paradigm for good practice anchored to the diagnostic schema developed in adult psychiatry. This paper hopes to stimulate discussion about where alternative paradigms might lead us on a path to precision medicine as applied to child psychiatry.


2016 ◽  
Vol 5 (3) ◽  
pp. 46-46
Author(s):  
Fengrui Xu ◽  
Xiaodi Wang ◽  
Zefei Jiang
Keyword(s):  

2016 ◽  
Vol 44 (9) ◽  
pp. 2611-2625 ◽  
Author(s):  
Ghassan S. Kassab ◽  
Gary An ◽  
Edward A. Sander ◽  
Michael I. Miga ◽  
Julius M. Guccione ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Claudio Angione

In cell and molecular biology, metabolism is the only system that can be fully simulated at genome scale. Metabolic systems biology offers powerful abstraction tools to simulate all known metabolic reactions in a cell, therefore providing a snapshot that is close to its observable phenotype. In this review, we cover the 15 years of human metabolic modelling. We show that, although the past five years have not experienced large improvements in the size of the gene and metabolite sets in human metabolic models, their accuracy is rapidly increasing. We also describe how condition-, tissue-, and patient-specific metabolic models shed light on cell-specific changes occurring in the metabolic network, therefore predicting biomarkers of disease metabolism. We finally discuss current challenges and future promising directions for this research field, including machine/deep learning and precision medicine. In the omics era, profiling patients and biological processes from a multiomic point of view is becoming more common and less expensive. Starting from multiomic data collected from patients and N-of-1 trials where individual patients constitute different case studies, methods for model-building and data integration are being used to generate patient-specific models. Coupled with state-of-the-art machine learning methods, this will allow characterizing each patient’s disease phenotype and delivering precision medicine solutions, therefore leading to preventative medicine, reduced treatment, andin silicoclinical trials.


Sign in / Sign up

Export Citation Format

Share Document