Linear Score Tests for Variance Components in Linear Mixed Models and Applications to Genetic Association Studies

Biometrics ◽  
2013 ◽  
Vol 69 (4) ◽  
pp. 883-892 ◽  
Author(s):  
Long Qu ◽  
Tobias Guennel ◽  
Scott L. Marshall
2018 ◽  
Author(s):  
Matthew P. Conomos ◽  
Alex P. Reiner ◽  
Mary Sara McPeek ◽  
Timothy A. Thornton

AbstractLinear mixed models (LMMs) have become the standard approach for genetic association testing in the presence of sample structure. However, the performance of LMMs has primarily been evaluated in relatively homogeneous populations of European ancestry, despite many of the recent genetic association studies including samples from worldwide populations with diverse ancestries. In this paper, we demonstrate that existing LMM methods can have systematic miscalibration of association test statistics genome-wide in samples with heterogenous ancestry, resulting in both increased type-I error rates and a loss of power. Furthermore, we show that this miscalibration arises due to varying allele frequency differences across the genome among populations. To overcome this problem, we developed LMM-OPS, an LMM approach which orthogonally partitions diverse genetic structure into two components: distant population structure and recent genetic relatedness. In simulation studies with real and simulated genotype data, we demonstrate that LMM-OPS is appropriately calibrated in the presence of ancestry heterogeneity and outperforms existing LMM approaches, including EMMAX, GCTA, and GEMMA. We conduct a GWAS of white blood cell (WBC) count in an admixed sample of 3,551 Hispanic/Latino American women from the Women’s Health Initiative SNP Health Association Resource where LMM-OPS detects genome-wide significant associations with corresponding p-values that are one or more orders of magnitude smaller than those from competing LMM methods. We also identify a genome-wide significant association with regulatory variant rs2814778 in the DARC gene on chromosome 1, which generalizes to Hispanic/Latino Americans a previous association with reduced WBC count identified in African Americans.


2018 ◽  
Vol 37 (28) ◽  
pp. 4234-4251 ◽  
Author(s):  
Thea Bjørnland ◽  
Anja Bye ◽  
Einar Ryeng ◽  
Ulrik Wisløff ◽  
Mette Langaas

2016 ◽  
Vol 98 (4) ◽  
pp. 653-666 ◽  
Author(s):  
Han Chen ◽  
Chaolong Wang ◽  
Matthew P. Conomos ◽  
Adrienne M. Stilp ◽  
Zilin Li ◽  
...  

2018 ◽  
Author(s):  
Hannah Verena Meyer ◽  
Francesco Paolo Casale ◽  
Oliver Stegle ◽  
Ewan Birney

AbstractGenome-wide association studies have helped to shed light on the genetic architecture of complex traits and diseases. Deep phenotyping of population cohorts is increasingly applied, where multi-to high-dimensional phenotypes are recorded in the individuals. Whilst these rich datasets provide important opportunities to analyse complex trait structures and pleiotropic effects at a genome-wide scale, existing statistical methods for joint genetic analyses are hampered by computational limitations posed by high-dimensional phenotypes. Consequently, such multivariate analyses are currently limited to a moderate number of traits. Here, we introduce a method that combines linear mixed models with bootstrapping (LiMMBo) to enable computationally efficient joint genetic analysis of high-dimensional phenotypes. Our method builds on linear mixed models, thereby providing robust control for population structure and other confounding factors, and the model scales to larger datasets with up to hundreds of phenotypes. We first validate LiMMBo using simulations, demonstrating consistent covariance estimates at greatly reduced computational cost compared to existing methods. We also find LiMMBo yields consistent power advantages compared to univariate modelling strategies, where the advantages of multivariate mapping increases substantially with the phenotype dimensionality. Finally, we applied LiMMBo to 41 yeast growth traits to map their genetic determinants, finding previously known and novel pleiotropic relationships in this high-dimensional phenotype space. LiMMBo is accessible as open source software (https://github.com/HannahVMeyer/limmbo).Author summaryIn multi-trait genetic association studies one is interested in detecting genetic variants that are associated with one or multiple traits. Genetic variants that influence two or more traits are referred to as pleiotropic. Multivariate linear mixed models have been successfully applied to detect pleiotropic effects, by jointly modelling association signals across traits. However, these models are currently limited to a moderate number of phenotypes as the number of model parameters grows steeply with the number of phenotypes, raising a computational burden. We developed LiMMBo, a new approach for the joint analysis of high-dimensional phenotypes. Our method reduces the number of effective model parameters by introducing an intermediate subsampling step. We validate this strategy using simulations, where we apply LiMMBo for the genetic analysis of hundreds of phenotypes, detecting pleiotropic effects for a wide range of simulated genetic architectures. Finally, to illustrate LiMMBo in practice, we apply the model to a study of growth traits in yeast, where we identify pleiotropic effects for traits with formerly known genetic effects as well as revealing previously unconnected traits.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kevin K. Esoh ◽  
Tobias O. Apinjoh ◽  
Steven G. Nyanjom ◽  
Ambroise Wonkam ◽  
Emile R. Chimusa ◽  
...  

AbstractInferences from genetic association studies rely largely on the definition and description of the underlying populations that highlight their genetic similarities and differences. The clustering of human populations into subgroups (population structure) can significantly confound disease associations. This study investigated the fine-scale genetic structure within Cameroon that may underlie disparities observed with Cameroonian ethnicities in malaria genome-wide association studies in sub-Saharan Africa. Genotype data of 1073 individuals from three regions and three ethnic groups in Cameroon were analyzed using measures of genetic proximity to ascertain fine-scale genetic structure. Model-based clustering revealed distinct ancestral proportions among the Bantu, Semi-Bantu and Foulbe ethnic groups, while haplotype-based coancestry estimation revealed possible longstanding and ongoing sympatric differentiation among individuals of the Foulbe ethnic group, and their Bantu and Semi-Bantu counterparts. A genome scan found strong selection signatures in the HLA gene region, confirming longstanding knowledge of natural selection on this genomic region in African populations following immense disease pressure. Signatures of selection were also observed in the HBB gene cluster, a genomic region known to be under strong balancing selection in sub-Saharan Africa due to its co-evolution with malaria. This study further supports the role of evolution in shaping genomes of Cameroonian populations and reveals fine-scale hierarchical structure among and within Cameroonian ethnicities that may impact genetic association studies in the country.


2015 ◽  
Author(s):  
Dário Ferreira ◽  
Sandra S. Ferreira ◽  
Célia Nunes ◽  
João T. Mexia

Sign in / Sign up

Export Citation Format

Share Document