scholarly journals Diagnostic deep‐targeted next‐generation sequencing assessment of TP53 gene mutations in multiple myeloma from the whole bone marrow

2020 ◽  
Vol 189 (4) ◽  
Author(s):  
Anna Petrackova ◽  
Jiri Minarik ◽  
Lenka Sedlarikova ◽  
Tereza Libigerova ◽  
Alzbeta Hamplova ◽  
...  
Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3419-3419
Author(s):  
Vincent P Schulz ◽  
Yelena Maksimova ◽  
Kimberly Lezon-Geyda ◽  
Patrick G Gallagher

Abstract Management of the patient with transfusion-dependent anemia (TDA) is complex. Diagnosis is frequently difficult as numerous disorders may lead to TDA, including bone marrow failure syndromes, congenital dyserythropoietic anemias, or inherited hemolytic anemias. Assigning the diagnosis may be problematic as transfused blood or reticulocytosis confound diagnostic testing, or, mutant erythrocytes are so unstable, they are rapidly destroyed. Complications of chronic transfusion include iron overload, infection risk, alloimmunization, cost, and inconvenience. TDA is an excellent candidate for targeted next generation sequencing. There is significant genotypic variability and many of the associated genetic loci are very large, making traditional sequencing strategies cumbersome. We studied 21 patients with TDA using genome-wide targeted exon capture followed by high-throughput next generation DNA sequencing (whole-exome sequencing, WES) using a NimbleGen SeqCap EZ Exome v2.0 solution-based capture system followed by next-generation sequencing on a HiSeq 2000 with paired-end sequencing at 75bp read length. The male:female ratio was 13:8. Age at referral ranged from 2 months to 14 years. All patients were transfusion dependent by 6 months of age. Working diagnoses included possible marrow failure syndrome, congenital dyserythropoietic anemia, and possible enzyme or membrane defect. Variant analyses were performed using the GATK pipeline. Targeted filtering and annotation of protein changing variants in 154 erythrocyte disease genes were performed using the ANNOVAR algorithm. Variants were assessed by mutation prediction and conservation programs including PolyPhen2, Sift, LRT, and Mutation Taster. Variants were also assessed for occurrence and frequency Thousand Genomes, Exome Sequencing Project, dbSNP, on line and local mutation databases, and PubMed. Copy number variants were assessed by ExomeCount and visual inspection. Potential disease-associated variants were validated by Sanger sequencing of DNA from the proband and parents. Interpretation was made using historical, clinical, laboratory and genetic data. The most common diagnosis was hereditary spherocytosis due to alpha spectrin gene (SPTA1) mutations, found in 7 patients. Two patients had deleterious mutations in both SPTA1 alleles; one with nonsense mutations in trans died of liver failure associated with iron overload, the other with nonsense and splicing mutations in trans remains transfusion dependent. One patient homozygous for an SPTA1 missense mutation in a highly conserved, functionally important amino acid had a sibling homozygous for the same mutation die in the perinatal period due to complications of anemia. Finally, one patient with SPTA1 nonsense and missense mutations in trans became transfusion independent post splenectomy. Ten patients had defects in erythrocyte metabolism. Mutations in the pyruvate kinase gene PKLR were found in 6 patients; two of these patients had deletions in the PKLR gene locus suggested by WES and confirmed by Gap PCR and MLPA. Three patients had bi-allelic mutations in the glucose phosphate isomerase gene and one had bi-allelic mutations in the hexokinase gene. Homozygosity was found in 4 of 10 patients with metabolic gene mutations. A single patient had beta thalassemia major with homozygous beta-globin gene mutations. Confirmatory functional studies are underway in three patients. Two TD patients had bone marrow findings suggestive of hypoplastic anemia; one had a missense mutation in a highly conserved residue of RPS7, recently associated with Diamond Blackfan anemia; the other had a deleterious mutation in FANCI predicted to function as a dominant negative. Functional studies are underway in a third patient with likely deleterious, membrane-linked variants. Application of targeted WES to TDA allows precise diagnosis to guide appropriate therapy, e.g. splenectomy or transplant; it allows genetic counseling of associated family members, and permits diagnosis and expectant management of future pregnancies. Targeted WES is an excellent tool for application to monogenic hematologic diseases where genotypic variability, i.e. mutations in numerous genes, leads to the same clinical phenotype. Examples include bone marrow failure syndromes, hemolytic anemia, congenital neutropenia, and immunodeficiency syndromes. Disclosures: No relevant conflicts of interest to declare.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253541
Author(s):  
Miyoung Kim ◽  
Kibum Jeon ◽  
Kasey Hutt ◽  
Alyssa M. Zlotnicki ◽  
Hyo Jung Kim ◽  
...  

Introduction We assessed the applicability of next-generation sequencing (NGS)-based IGH/IGK clonality testing and analyzed the repertoire of immunoglobulin heavy chain (IGH) or immunoglobulin kappa light chain (IGK) gene usage in Korean patients with multiple myeloma (MM) for the first time. Methods Fifty-nine bone marrow samples from 57 Korean patients with MM were analyzed, and NGS-based clonality testing that targeted the IGH and IGK genes was performed using IGH FR1 and IGK primer sets. Results Clonal IGH and IGK rearrangements were observed in 74.2% and 67.7% of samples from Korean patients with kappa-restricted MM, respectively (90.3% had one or both), and in 60.7% and 95.5% of samples from those with lambda-restricted MM, respectively (85.7% had one or both). In total, 88.1% of samples from Koreans with MM had clonal IGH and/or IGK rearrangement. Clonal rearrangement was not significantly associated with the bone marrow plasma cells as a proportion of all BM lymphoid cells. IGHV3-9 (11.63%) and IGHV4-31 (9.30%) were the most frequently reported IGHV genes and were more common in Koreans with MM than in Western counterparts. IGHD3-10 and IGHD3-3 (13.95% each) were the most frequent IGHD genes; IGHD3-3 was more common in Koreans with MM. No IGK rearrangement was particularly prevalent, but single IGKV-J rearrangements were less common in Koreans with kappa-restricted MM than in Western counterparts. IGKV4-1 was less frequent in Koreans regardless of light chain type. Otherwise, the usages of the IGH V, D, and J genes and of the IGK gene were like those observed in previous Western studies. Conclusion NGS-based IGH/IGK clonality testing ought to be applicable to most Koreans with MM. The overrepresentation of IGHV3-9, IGHV4-31, and IGHD3-3 along with the underrepresentation of IGKV4-1 and the differences in IGK gene rearrangement types suggest the existence of ethnicity-specific variations in this disease.


2016 ◽  
Vol 18 (4) ◽  
pp. 471-479 ◽  
Author(s):  
Gemma Armengol ◽  
Virinder K. Sarhadi ◽  
Reza Ghanbari ◽  
Masoud Doghaei-Moghaddam ◽  
Reza Ansari ◽  
...  

ESMO Open ◽  
2019 ◽  
Vol 4 (5) ◽  
pp. e000525 ◽  
Author(s):  
George Zarkavelis ◽  
Vassiliki Kotoula ◽  
Georgia-Angeliki Kolliou ◽  
Kyriaki Papadopoulou ◽  
Ioannis Tikas ◽  
...  

Pancreatic cancer is one of the most fatal malignancies ranking fourth among the leading causes of cancer death with diagnosis at late stages carrying a dismal prognosis. The aim of our retrospective study was to describe the nature and the incidence of gene mutations and genomic instability in advanced pancreatic adenocarcinomas of a Greek patient population fully annotated with clinicopathological data. We used a targeted next-generation sequencing (NGS) panel encompassing genes commonly mutated in pancreatic tumours in a patient population managed with either nab-paclitaxel regimens or targeted compounds modulating the epidermal growth factor receptor (EGFR)/AKT/mTOR axis. We identified KRAS, TP53, SMAD4 and CDKN2A as being the most prevalent mutations in the study population with the exception of an intriguingly lower incidence regarding KRAS mutants. Homologous recombination gene mutations were found to be mutually exclusive with CDKN2A mutations. The coexistence of both KRAS and TP53 mutation seems to adversely affect the outcome of the patients whether treated with targeted therapy against EGFR/Akt/mTOR axis or cytotoxic drugs. The poor prognosis observed, correlated to late presentation, specific molecular mutations and to high mutational load warrant prospective validating studies and research into the mechanistic pathophysiology of pancreatic tumours for more effective therapeutic targeting.


Sign in / Sign up

Export Citation Format

Share Document