scholarly journals Altered distributions in circulating follicular helper and follicular regulatory T cells accountable for imbalanced cytokine production in multiple sclerosis

Author(s):  
R. Haque ◽  
Y. Kim ◽  
K. Park ◽  
H. Jang ◽  
S. Y. Kim ◽  
...  
2016 ◽  
Vol 46 (5) ◽  
pp. 1152-1161 ◽  
Author(s):  
Hao Wu ◽  
Yuxin Chen ◽  
Hong Liu ◽  
Lin-Lin Xu ◽  
Paula Teuscher ◽  
...  

2005 ◽  
Vol 11 (3) ◽  
pp. 349-359 ◽  
Author(s):  
Hans HLP van den Broek ◽  
Jan GMC Damoiseaux ◽  
Marc H De Baets ◽  
Raymond MM Hupperts

The female predominance of multiple sclerosis (MS) has suggested that hormonal differences between the sexes must confer some protective effect on males or enhance the susceptibility of females to this disease. There has been evidence that gonadal hormones can modulate the immune response regulated by antigen presenting cells and T cells. These cells control the immune response by the production of interacting pro- and anti-inflammatory cytokines. The first include the acute phase pro-inflammatory cytokines of the innate immune response as well as the T-helper 1 (Th1) cytokines, while the later contain the Th2 cytokines as well as the suppressor cytokines. There is some evidence that MS and experimental autoimmune encephalitis (EAE) are Th1 cell-mediated diseases. For this reason many studies have been done to influence the pro-inflammatory cytokine production of these Th1 cells in favour of an anti-inflammatory immune response as mediated by Th2 cells. However the role of the regulatory T cells in this context is not clearly understood. Here we review the studies concerning the role of sex hormones on the cytokine production in relation to the disease course of MS and EAE and in particular in the light of the recent revival of the regulatory T cells and their suppressive cytokines.


Cytotherapy ◽  
2007 ◽  
Vol 9 (2) ◽  
pp. 144-157 ◽  
Author(s):  
Ca Keever-Taylor ◽  
Mb Browning ◽  
Bd Johnson ◽  
Rl Truitt ◽  
Cn Bredeson ◽  
...  

2013 ◽  
Vol 19 (14) ◽  
pp. 1867-1877 ◽  
Author(s):  
Que Lan Quach ◽  
Luanne M Metz ◽  
Jenna C Thomas ◽  
Jonathan B Rothbard ◽  
Lawrence Steinman ◽  
...  

Background: Suppression of activation of pathogenic CD4+ T cells is a potential therapeutic intervention in multiple sclerosis (MS). We previously showed that a small heat shock protein, CRYAB, reduced T cell proliferation, pro-inflammatory cytokine production and clinical signs of experimental allergic encephalomyelitis, a model of MS. Objective: We assessed whether the ability of CRYAB to reduce the activation of T cells translated to the human disease. Methods: CD4+ T cells from healthy controls and volunteers with MS were activated in vitro in the presence or absence of a CRYAB peptide (residues 73–92). Parameters of activation (proliferation rate, cytokine secretion) and tolerance (anergy, activation-induced cell death, microRNAs) were evaluated. Results: The secretion of pro-inflammatory cytokines by CD4+ T cells was decreased in the presence of CRYAB in a subset of relapsing–remitting multiple sclerosis (RRMS) participants with mild disease severity while no changes were observed in healthy controls. Further, there was a correlation for higher levels of miR181a microRNA, a marker upregulated in tolerant CD8+ T cells, in CD4+ T cells of MS patients that displayed suppressed cytokine production (responders). Conclusion: CRYAB may be capable of suppressing the activation of CD4+ T cells from a subset of RRMS patients who appear to have less disability but similar age and disease duration.


2021 ◽  
Vol 384 (6) ◽  
pp. 578-580
Author(s):  
Joan M. Goverman

Sign in / Sign up

Export Citation Format

Share Document