Rapamycin enriches for CD4+ CD25+ CD27+ Foxp3+ regulatory T cells in ex vivo-expanded CD25-enriched products from healthy donors and patients with multiple sclerosis

Cytotherapy ◽  
2007 ◽  
Vol 9 (2) ◽  
pp. 144-157 ◽  
Author(s):  
Ca Keever-Taylor ◽  
Mb Browning ◽  
Bd Johnson ◽  
Rl Truitt ◽  
Cn Bredeson ◽  
...  
Autoimmunity ◽  
2016 ◽  
Vol 49 (6) ◽  
pp. 388-396 ◽  
Author(s):  
Gelena V. Lifshitz ◽  
Dmitry D. Zhdanov ◽  
Anastasia V. Lokhonina ◽  
Daria D. Eliseeva ◽  
Elena Y. Lyssuck ◽  
...  

2004 ◽  
Vol 199 (7) ◽  
pp. 971-979 ◽  
Author(s):  
Vissia Viglietta ◽  
Clare Baecher-Allan ◽  
Howard L. Weiner ◽  
David A. Hafler

CD4+CD25+ regulatory T cells contribute to the maintenance of peripheral tolerance by active suppression because their deletion causes spontaneous autoimmune diseases in mice. Human CD4+ regulatory T cells expressing high levels of CD25 are suppressive in vitro and mimic the activity of murine CD4+CD25+ regulatory T cells. Multiple sclerosis (MS) is an inflammatory disease thought to be mediated by T cells recognizing myelin protein peptides. We hypothesized that altered functions of CD4+CD25hi regulatory T cells play a role in the breakdown of immunologic self-tolerance in patients with MS. Here, we report a significant decrease in the effector function of CD4+CD25hi regulatory T cells from peripheral blood of patients with MS as compared with healthy donors. Differences were also apparent in single cell cloning experiments in which the cloning frequency of CD4+CD25hi T cells was significantly reduced in patients as compared with normal controls. These data are the first to demonstrate alterations of CD4+CD25hi regulatory T cell function in patients with MS.


2012 ◽  
Vol 67 (3) ◽  
pp. 68-74 ◽  
Author(s):  
D. D. Eliseeva ◽  
I. A. Zavalishin ◽  
A. V. Karaulov ◽  
S. N. Bykovskaya

In the maintenance of immunological tolerance important role belongs to the recently discovered population of regulatory T-cells CD4 + CD25 + FoxP3 +. These cells have potential in suppressing pathologic immune responses observed at various autoimmune diseases including multiple sclerosis. We have shown a reduction in the number and functional activity of T-reg in peripheral blood of patients with multiple sclerosis in the acute stage, the increase in their number during remission, duration of the relationship of the autoimmune process and the degree of disability of patients with the contents of T-reg. The possibility of using the grown ex vivo T-reg for the correction of immunopathological process in multiple sclerosis. 


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2344-2344
Author(s):  
Tokiko Nagamura-Inoue ◽  
Kazuo Ogami ◽  
Kazuaki Yokoyama ◽  
Kiyoko Izawa ◽  
Seiichiro Kobayashi ◽  
...  

Abstract CD4+CD25+Foxp3+ regulatory T cells (Treg) play an important role in allograft- and self-tolerance and thus have the potential for therapeutic application in immunological and allergic disorders. However, the frequencies of Treg in peripheral blood are very low. Here we attempted the ex vivo expansion of Treg to enable the adaptive immunoregulatory therapy in humans. CD4+ T cells from peripheral blood of healthy donors or patients with chronic graft-versus-host disease (GVHD) were isolated by anti-CD4 monoclonal antibody (MAb)-conjugated magnetic beads, and cultured using a plastic plate coated with anti-CD28 and anti-CD3-MAbs in the medium containing recombinant human (rh) IL-2 and rhTGF-b. After one week of culture, expanding cells were once detached from the plate and subjected to the fresh medium including rhIL-2 and rhTGF-b but not MAbs. After 2-weeks of culture, phenotypic and functional analyses were performed. Mixed lymphocyte reaction was done using CFSE-labeled responder T cells and autologous or allogeneic dendritic cells (DC) with or without expanded Treg-rich populations. Xenogeneic -GVHD in NOD-Scid mice was induced by the injection of human T cells expressing luciferace transgene, followed by in vivo bioluminescence imaging (BLI) analysis using a CCD camera. Our expansion procedure with TGF-b yielded 45-83% purity of Foxp3+CD25+CD4+Treg co-expressing CTLA-4, CD54 and GITR, while 8-42% purity without TGF-b(p<0.001). These cell populations also displayed CD45RO+CD45RA−CD26high+ memory phenotype. An average expansion rate of Treg was 62,200 fold (25,500–97,900) in healthy donors during the culture periods (n=5). Thus, we obtained an average of 4.7x108 Treg from the initial number of 5x105 CD4+ T cells in peripheral blood. Additionally, from peripheral CD4+ T cells in patients with chronic GVHD, Treg could be expanded equivalently to healthy donors. The resulting Treg-rich populations inhibited the proliferative response of CFSE-labeled T cells to autologous and allogeneic DC (Figure 1). The ex vivo expanded Treg-rich populations had the inhibitory effect on xeno-reactive T cells expressing luciferase transgene in a xenogeneic GVHD model (Figure 2). Our procedure has allowed efficient ex vivo expansion of Treg-rich populations from a small volume of peripheral blood, and will be applicable to clinical use. Figure 1. MLR inhibited by expanded Treg Figure 1. MLR inhibited by expanded Treg Figure 2. Xenogeneic GVHD diminished by expanded Treg. Figure 2. Xenogeneic GVHD diminished by expanded Treg.


2021 ◽  
Vol 11 (13) ◽  
pp. 5776
Author(s):  
Varvara G. Blinova ◽  
Natalia S. Novachly ◽  
Sofya N. Gippius ◽  
Abdullah Hilal ◽  
Yulia A. Gladilina ◽  
...  

Regulatory T cells (Tregs) participate in the negative regulation of inflammatory reactions by suppressing effector cells. In a number of autoimmune disorders, the suppressive function and/or the number of Tregs is compromised. The lack of active functioning Tregs can be restored with adoptive transfer of expanded ex vivo autologous Tregs. In our study, we traced the differentiation and maturation of Tregs CD4+CD25+FoxP3+CD127low over 7 days of cultivation from initial CD4+ T cells under ex vivo conditions. The resulting ex vivo expanded cell population (eTregs) demonstrated the immune profile of Tregs with an increased capacity to suppress the proliferation of target effector cells. The expression of the FoxP3 gene was upregulated within the time of expansion and was associated with gradual demethylation in the promotor region of the T cell-specific demethylation region. Real-time RT-PCR analysis revealed changes in the expression profile of genes involved in cell cycle regulation. In addition to FOXP3, the cells displayed elevated mRNA levels of Ikaros zinc finger transcription factors and the main telomerase catalytic subunit hTERT. Alternative splicing of FoxP3, hTERT and IKZF family members was demonstrated to be involved in eTreg maturation. Our data indicate that expanded ex vivo eTregs develop a Treg-specific phenotype and functional suppressive activity. We suggest that eTregs are not just expanded but transformed cells with enhanced capacities of immune suppression. Our findings may influence further development of cell immunosuppressive therapy based on regulatory T cells.


Life ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 245
Author(s):  
Daniil Shevyrev ◽  
Valeriy Tereshchenko ◽  
Elena Blinova ◽  
Nadezda Knauer ◽  
Ekaterina Pashkina ◽  
...  

Homeostatic proliferation (HP) is a physiological process that reconstitutes the T cell pool after lymphopenia involving Interleukin-7 and 15 (IL-7 and IL-15), which are the key cytokines regulating the process. However, there is no evidence that these cytokines influence the function of regulatory T cells (Tregs). Since lymphopenia often accompanies autoimmune diseases, we decided to study the functional activity of Tregs stimulated by HP cytokines from patients with rheumatoid arthritis as compared with that of those from healthy donors. Since T cell receptor (TCR) signal strength determines the intensity of HP, we imitated slow HP using IL-7 or IL-15 and fast HP using a combination of IL-7 or IL-15 with anti-CD3 antibodies, cultivating Treg cells with peripheral blood mononuclear cells (PBMCs) at a 1:1 ratio. We used peripheral blood from 14 patients with rheumatoid arthritis and 18 healthy volunteers. We also used anti-CD3 and anti-CD3 + IL-2 stimulation as controls. The suppressive activity of Treg cells was evaluated in each case by the inhibition of the proliferation of CD4+ and CD8+ cells. The phenotype and proliferation of purified CD3+CD4+CD25+CD127lo cells were assessed by flow cytometry. The suppressive activity of the total pool of Tregs did not differ between the rheumatoid arthritis and healthy donors; however, it significantly decreased in conditions close to fast HP when the influence of HP cytokines was accompanied by anti-CD3 stimulation. The Treg proliferation caused by HP cytokines was lower in the rheumatoid arthritis (RA) patients than in the healthy individuals. The revealed decrease in Treg suppressive activity could impact the TCR landscape during lymphopenia and lead to the proliferation of potentially self-reactive T cell clones that are able to receive relatively strong TCR signals. This may be another explanation as to why lymphopenia is associated with the development of autoimmune diseases. The revealed decrease in Treg proliferation under IL-7 and IL-15 exposure can lead to a delay in Treg pool reconstitution in patients with rheumatoid arthritis in the case of lymphopenia.


2004 ◽  
Vol 199 (9) ◽  
pp. 1285-1291 ◽  
Author(s):  
Martin A. Kriegel ◽  
Tobias Lohmann ◽  
Christoph Gabler ◽  
Norbert Blank ◽  
Joachim R. Kalden ◽  
...  

In autoimmune polyglandular syndromes (APS), several organ-specific autoimmune diseases are clustered. Although APS type I is caused by loss of central tolerance, the etiology of APS type II (APS-II) is currently unknown. However, in several murine models, depletion of CD4+ CD25+ regulatory T cells (Tregs) causes a syndrome resembling human APS-II with multiple endocrinopathies. Therefore, we hypothesized that loss of active suppression in the periphery could be a hallmark of this syndrome. Tregs from peripheral blood of APS-II, control patients with single autoimmune endocrinopathies, and normal healthy donors showed no differences in quantity (except for patients with isolated autoimmune diseases), in functionally important surface markers, or in apoptosis induced by growth factor withdrawal. Strikingly, APS-II Tregs were defective in their suppressive capacity. The defect was persistent and not due to responder cell resistance. These data provide novel insights into the pathogenesis of APS-II and possibly human autoimmunity in general.


Sign in / Sign up

Export Citation Format

Share Document