scholarly journals Purkinje Images: Conveying Different Content for Different Luminance Adaptations in a Single Image

2014 ◽  
Vol 34 (1) ◽  
pp. 116-126 ◽  
Author(s):  
Sami Arpa ◽  
Tobias Ritschel ◽  
Karol Myszkowski ◽  
Tolga Çapın ◽  
Hans-Peter Seidel

VASA ◽  
2015 ◽  
Vol 44 (2) ◽  
pp. 122-128 ◽  
Author(s):  
Mandy Becker ◽  
Tom Schilling ◽  
Olga von Beckerath ◽  
Knut Kröger

Background: To clarify the clinical use of sonography for differentiation of edema we tried to answer the question whether a group of doctors can differentiate lymphedema from cardiac, hepatic or venous edema just by analysing sonographic images of the edema. Patients and methods: 38 (70 ± 12 years, 22 (58 %) females) patients with lower limb edema were recruited according the clinical diagnosis: 10 (26 %) lymphedema, 16 (42 %) heart insufficiency, 6 (16 %) venous disorders, 6 (16 %) chronic hepatic disease. Edema was depicted sonographically at the most affected leg in a standardised way at distal and proximal calf. 38 sets of images were anonymised and send to 5 experienced doctors. They were asked whether they can see criteria for lymphedema: 1. anechoic gaps, 2. horizontal gaps and 3. echoic rims. Results: Accepting an edema as lymphedema if only one doctor sees at least one of the three criteria for lymphatic edema on each single image all edema would be classified as lymphatic. Accepting lymphedema only if all doctors see at least one of the three criteria on the distal image of the same patient 80 % of the patients supposed to have lymphedema are classified as such, but also the majority of cardiac, venous and hepatic edema. Accepting lymphedema only if all doctors see all three criteria on the distal image of the same patients no edema would be classified as lymphatic. In addition we separated patients by Stemmers’ sign in those with positive and negative sign. The interpretation of the images was not different between both groups. Conclusions: Our analysis shows that it is not possible to differentiate lymphedema from other lower limb edema sonographically.



2019 ◽  
Vol 78 (8) ◽  
pp. 671-681
Author(s):  
A. V. Akhmametieva ◽  
M. C. Bwabwa


2020 ◽  
Vol 2020 (1) ◽  
pp. 74-77
Author(s):  
Simone Bianco ◽  
Luigi Celona ◽  
Flavio Piccoli

In this work we propose a method for single image dehazing that exploits a physical model to recover the haze-free image by estimating the atmospheric scattering parameters. Cycle consistency is used to further improve the reconstruction quality of local structures and objects in the scene as well. Experimental results on four real and synthetic hazy image datasets show the effectiveness of the proposed method in terms of two commonly used full-reference image quality metrics.







2010 ◽  
Vol 22 (7) ◽  
pp. 1188-1193
Author(s):  
Zhijun Du ◽  
Yangsheng Wang


2018 ◽  
Vol 30 (11) ◽  
pp. 2001
Author(s):  
Yongwei Miao ◽  
Xun Wang ◽  
Jiazhou Chen ◽  
Xudong Zhang ◽  
Yong-Tsui Lee


1987 ◽  
Vol 52 (8) ◽  
pp. 2019-2027 ◽  
Author(s):  
Libor Červený ◽  
Nguyen Thi Du ◽  
Ivo Paseka

Palladium catalysts have been used to study the hydrogenation of 1-phenyl-2-butene-1-ol which is accompanied by several side reactions considered to be acid-catalysed. Another model reaction studied was dehydration and subsequent hydrogenation or hydrogenolysis of 1-phenyl-1,3-propanediol to 3-phenyl-1-propanol, accompanied by formation of propylbenzene. The dehydration and propylbenzene formation can be again classified as acid-catalysed reactions. Another one is methanolysis of styrene oxide taking place under conditions of liquid phase hydrogenation due to the acid properties of Pd-H systems. Hydrogenation activity of Pd catalysts was tested by hydrogenation of cyclohexene. Sixteen Pd catalysts on different supports and with different content of active component were used, their activity and selectivity was determined and the effect of variable parameters in the synthesis of these catalysts on the activity and selectivity is discussed.



Sign in / Sign up

Export Citation Format

Share Document