New optimization method based on energy management in microgrids based on energy storage systems and combined heat and power

2019 ◽  
Vol 36 (1) ◽  
pp. 55-79
Author(s):  
Xiangyu Zeng ◽  
Stephen Berti
Author(s):  
Thales Augusto Fagundes ◽  
Guilherme Henrique Favaro Fuzato ◽  
Plinio Goncalves Bueno Ferreira ◽  
Mauricio Biczkowski ◽  
Ricardo Quadros Quadros Machado

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1666
Author(s):  
Abdellatif Elmouatamid ◽  
Radouane Ouladsine ◽  
Mohamed Bakhouya ◽  
Najib El kamoun ◽  
Khalid Zine-Dine

The integration of renewable energy sources (RES) was amplified, during the past decades, in order to tackle the challenges related to energy demands and CO2 increases. Recently, many initiatives have been taken by promoting the deployment and the usage of micro-grids (MG) in buildings, as decentralized systems, for energy production. However, the variable nature of RESs and the limited size of energy storage systems require the deployment of adaptive control strategies for efficient energy balance. In this paper, a generalized predictive control (GPC) strategy is introduced for energy management (EM) in MG systems. Its main objective is to efficiently connect the electricity generators and consumers in order to predict the most suitable actions for energy flow management. In fact, based on energy production and consumption profiles as well as the availability of energy storage systems, the proposed EM will be able to select the best suitable energy source for supplying the building’s loads. It will efficiently manage the usage of energy storage and the utility grid while maximizing RESs power generation. Simulations have been conducted, using real-sitting scenarios, and results are presented to validate the proposed predictive control approach by showing its effectiveness for MG systems control.


2018 ◽  
Vol 57 (3) ◽  
pp. 253-271 ◽  
Author(s):  
A Geetha ◽  
C Subramani

The study of electric vehicle and its energy sources are being incorporated in undergraduate and postgraduate syllabuses. This article discusses the basic concepts and design of energy storage systems for electricity based transpiration application. The content of this work elaborates the importance of energy storage systems in electric vehicle and hybridization of energy storage systems i.e. battery and ultracapacitor, which seems to be a promising topic among the final-year project students as well as an emerging research topic among the research scholars worldwide. Hence, this article is prepared in order to trigger those students’ knowledge in multisourced electric vehicle in depth. This study highly focuses on fuzzy logic-based energy sources power split strategy for a multisourced electric vehicle to enhance a better sharing of energy across the multisources with distinct characteristics like high specific power (ultracapacitor) and high specific energy (battery). In general, fuzzy logic controller best suits for a complicated real-time problem. Further it does not require a priori knowledge of a vehicle driving pattern over a time. Hence, the proposed control strategy can provide a satisfactory improvement in vehicle efficiency, assured reduction in stress factor, and energy consumption rate and reduced ultracapacitor sources state of charge difference in all different hybridization topologies. Thus, this paper can help students working on energy management problems of hybridization of energy sources.


Sign in / Sign up

Export Citation Format

Share Document