optimal filter
Recently Published Documents


TOTAL DOCUMENTS

306
(FIVE YEARS 64)

H-INDEX

23
(FIVE YEARS 2)

2022 ◽  
Vol 17 (01) ◽  
pp. P01002
Author(s):  
L. Polson ◽  
L. Kurchaninov ◽  
M. Lefebvre

Abstract The liquid argon ionization current in a sampling calorimeter cell can be analyzed to determine the energy of detected particles. In practice, experimental artifacts such as pileup and electronic noise make the inference of energy from current a difficult process. The beam intensity of the Large Hadron Collider will be significantly increased during the Phase-II long shut-down of 2025–2027. Signal processing techniques that are used to extract the energy of detected particles in the ATLAS detector will suffer a significant loss in performance under these conditions. This paper compares the presently used optimal filter technique to convolutional neural networks for energy reconstruction in the ATLAS liquid argon hadronic end cap calorimeter. In particular, it is shown that convolutional neural networks trained with an appropriately tuned and novel loss function are able to outperform the optimal filter technique.


2021 ◽  
Vol 14 (1) ◽  
pp. 48
Author(s):  
Jie Song ◽  
Zukun Lu ◽  
Zhibin Xiao ◽  
Baiyu Li ◽  
Guangfu Sun

Adaptive filtering algorithms can be used on the time-domain processing of navigation receivers to suppress interference and maintain the navigation and positioning function. The filter length can affect the interference suppression performance and hardware utilization simultaneously. In practical engineering, the filter length is usually set to a large number to guarantee anti-jamming performance, which means a high-performance receiver requires a high-complexity anti-jamming filter. The study aims at solving the problem by presenting a design method for the optimal filter order in the time-domain anti-jamming receiver, with no need for detailed interference information. According to interference bandwidth and jam-to-signal ratio (JSR), the approach designed a band-stop filter by Kaiser window for calculating the optimal filter order to meet interference suppression requirements. The experimental results show that the time-domain filtering processing has achieved good interference suppression performance for engineering requirements with optimal filter order in satellite navigation receivers.


Author(s):  
Lixun Huang ◽  
Lijun Sun ◽  
Tao Wang ◽  
Qiuwen Zhang ◽  
Weihua Liu ◽  
...  

2021 ◽  
Vol 2021 (29) ◽  
pp. 141-147
Author(s):  
Michael J. Vrhel ◽  
H. Joel Trussell

A database of realizable filters is created and searched to obtain the best filter that, when placed in front of an existing camera, results in improved colorimetric capabilities for the system. The image data with the external filter is combined with image data without the filter to provide a six-band system. The colorimetric accuracy of the system is quantified using simulations that include a realistic signal-dependent noise model. Using a training data set, we selected the optimal filter based on four criteria: Vora Value, Figure of Merit, training average ΔE, and training maximum ΔE. Each selected filter was used on testing data. The filters chosen using the training ΔE criteria consistently outperformed the theoretical criteria.


2021 ◽  
Author(s):  
Gui-Hua Liu ◽  
Yan-Bo Chen ◽  
Yuan Gao ◽  
Jia-Ning Zhu ◽  
Bo-Xin Wang ◽  
...  

Author(s):  
S. Zahran ◽  
M. Mostafa ◽  
M. Moussa ◽  
A. Salib ◽  
A. Moussa ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document