Relationship between left ventricular vortex and preejectional flow velocity during isovolumic contraction studied by using vector flow mapping

Author(s):  
Qiaozhen Li ◽  
Liang Huang ◽  
Na Ma ◽  
Zhiguo Li ◽  
Yu Han ◽  
...  
2012 ◽  
Vol 29 (5) ◽  
pp. 579-587 ◽  
Author(s):  
Haibin Zhang ◽  
Jun Zhang ◽  
Xiaoxing Zhu ◽  
Lulu Chen ◽  
Liwen Liu ◽  
...  

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Kazuaki Wakami ◽  
Kenta Hachiya ◽  
Syunsuke Murai ◽  
Tsuyoshi Ito ◽  
Hiroshi Fujita ◽  
...  

Background: We previously reported that the inertia force (IF) of blood flowing out of left ventricle (LV) during late-systole produces greater LV elastic recoil force and brings faster LV relaxation. Vector flow mapping (VFM TM , Hitachi-Aloka) enables us to see blood flow velocity vectors that are generated from conventional color Doppler imaging data at any phase of cardiac cycle without angle dependency. Using VFM, kinetic energy (KE) of ejecting blood flow during systole at the LV outflow tract (LVOT) can be obtained. Thus, we investigated whether the KE obtained at the LVOT during late systole (KE-ls) had any relations with the IF and invasively obtained LV function parameters. Method: Study subjects were 33 patients who underwent diagnostic cardiac catheterization and echocardiographic examination on the same day. Color Doppler images were acquired in the apical 3-chamber view. The frame rate ranged was from 40 to 51 frames per minute. Data analyses were performed offline using the commercially available software (DAS-RS1 TM, Hitachi-Aloka). A data sampling area was set at the level just below the aortic valve in the LVOT. The KE-ls was computed as the sum of KE values computed in frame by frame basis during late-systole; late-systole was defined as the latter one-third of ejecting time. LV pressure wave was obtained using a catheter-tipped micromanometer, and then, the first derivative of LV pressure (dP/dt) and a time constant τ of LV pressure decay during isovolumic relaxation were calculated. From LV pressure-dP/dt relationships (phase loop), the IF was determined. Results: A significant positive correlation was observed between the KE-ls and the IF (r=0.79, p<0.0001). The log transformed KE-ls had significant correlations with both peak negative dP/dt (r=0.53, p<0.01) and the time constant τ (r=-0.67, p<0.0001). Conclusion: VFM is a new useful technique to see blood flow in the LV chamber. Noninvasively obtained KE-ls using VFM, which may be a noninvasive surrogate for the IF, has significant correlations with the parameters of LV relaxation.


2020 ◽  
Vol 41 (7) ◽  
pp. 1466-1472
Author(s):  
Hui Li ◽  
Shengshou Hu ◽  
Qinglong Meng ◽  
Yuhong Feng ◽  
Rui Liu ◽  
...  

2012 ◽  
Vol 29 (9) ◽  
pp. 1081-1090 ◽  
Author(s):  
Ran Chen ◽  
Bo-Wen Zhao ◽  
Bei Wang ◽  
Hai-Lin Tang ◽  
Peng Li ◽  
...  

2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Koichi Akiyama ◽  
Sachiko Maeda ◽  
Tasuku Matsuyama ◽  
Atsushi Kainuma ◽  
Maki Ishii ◽  
...  

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
K Masuda ◽  
S Minami ◽  
M Stugaard ◽  
A Kozuma ◽  
S Takeda ◽  
...  

Abstract Background Although left ventricular (LV) flow dynamics should be closely related to LV morphology and function, little is known about how heart failure (HF) changes it. Pathline Analysis (PA), a recently developed software based on Vector Flow Mapping (VFM, Hitachi), enables us to trace the virtual blood particles entering to the LV in diastole and being ejected in systole. We investigated the change of flow dynamics in HF induced in dogs using PA. Methods In 15 open-chest dogs, HF was induced by intracoronary injection of microspheres. Color Doppler images of apical long-axis view were acquired using Prosound F75 (Hitachi) before and after HF and were analyzed by PA. We calculated the ratio of the numbers of entering particles in diastole and ejected particles in systole (ejection rate) and the distance reached by the particles in diastole corrected by the LV long-axis diameter (propagation distance). Apical and basal short axis images were acquired using GE Vivid E9 and were analyzed for peak rotation and peak twist. Results After inducing HF, LV end-diastolic pressure increased from 6±2 to 15±5 mmHg (p<0.001) and ejection fraction (EF), apical peak rotation and peak twist decreased significantly (EF; 58±5 to 36±8%, apical peak rotation; 14±5 to 3±2 degree, peak twist; 19±5 to 6±3 degree, p<0.05, respectively). PA showed most of the entering particles to the LV were ejected in the following systole at the control stage, but in HF, a significant part of the entering particles were not ejected and remained in the LV (Figure). Ejection rate decreased from 50±11 to 26±11% (p<0.001) and the propagation distance decreased from 85±9 to 66±13% (p<0.001) after inducing HF. There were significant relationships between indices obtained by PA and EF and peak twist (Table). Conclusion A significant part of inflow is not ejected directly to the outflow in the next systole and remains in the LV in HF, suggesting inefficient flow dynamics.


Sign in / Sign up

Export Citation Format

Share Document