Anesthetic effects of isoflurane on the tonotopic map and neuronal population activity in the rat auditory cortex

2015 ◽  
Vol 42 (6) ◽  
pp. 2298-2311 ◽  
Author(s):  
Takahiro Noda ◽  
Hirokazu Takahashi
2017 ◽  
Author(s):  
Sophie Bagur ◽  
Martin Averseng ◽  
Diego Elgueda ◽  
Stephen David ◽  
Jonathan Fritz ◽  
...  

AbstractThe main functions of primary sensory cortical areas are classically considered to be the extraction and representation of stimulus features. In contrast, higher cortical sensory association areas are thought to be responsible for combining these sensory representations with internal motivations and learnt associations. These regions generate appropriate neural responses that are maintained until a motor command is executed. Within this framework, responses of the primary sensory areas during task performance are expected to carry less information about the behavioral meaning of the stimulus than higher sensory, association, motor and frontal cortices. Here we demonstrate instead that the neuronal population responses in the early primary auditory cortex (A1) display many aspects of responses generally associated with higher-level areas. A1 activity was recorded in awake ferrets while they were either passively listening or actively discriminating two periodic click trains of different rates in a Go/No-Go paradigm. By applying population-level dimensionality reduction techniques, we found that task-engagement induced a shift in the nature of the encoding from a sensory-driven representation of the two stimuli to a behaviorally relevant representation of the two categories that specifically enhances the target stimulus. We demonstrate that this shift in encoding relies partly on a novel mechanism of change in spontaneous activity patterns upon engagement in the task. We show that this population-level representation of stimuli in A1 population activity bears strong similarities to responses in the frontal cortex, but appears earlier following stimulus presentation. Analysis of neural activity recorded in various Go/No-Go tasks, with different sounds and reinforcement paradigms, reveals that this striking population-level enhancement of target representation is a general property of task engagement. These findings indicate that primary sensory cortices play a highly flexible role in the processing of incoming stimuli and implement a crucial change in the structure of population activity in order to extract task-relevant information during behavior.


1998 ◽  
Vol 79 (2) ◽  
pp. 1017-1044 ◽  
Author(s):  
Kechen Zhang ◽  
Iris Ginzburg ◽  
Bruce L. McNaughton ◽  
Terrence J. Sejnowski

Zhang, Kechen, Iris Ginzburg, Bruce L. McNaughton, and Terrence J. Sejnowski. Interpreting neuronal population activity by reconstruction: unified framework with application to hippocampal place cells. J. Neurophysiol. 79: 1017–1044, 1998. Physical variables such as the orientation of a line in the visual field or the location of the body in space are coded as activity levels in populations of neurons. Reconstruction or decoding is an inverse problem in which the physical variables are estimated from observed neural activity. Reconstruction is useful first in quantifying how much information about the physical variables is present in the population and, second, in providing insight into how the brain might use distributed representations in solving related computational problems such as visual object recognition and spatial navigation. Two classes of reconstruction methods, namely, probabilistic or Bayesian methods and basis function methods, are discussed. They include important existing methods as special cases, such as population vector coding, optimal linear estimation, and template matching. As a representative example for the reconstruction problem, different methods were applied to multi-electrode spike train data from hippocampal place cells in freely moving rats. The reconstruction accuracy of the trajectories of the rats was compared for the different methods. Bayesian methods were especially accurate when a continuity constraint was enforced, and the best errors were within a factor of two of the information-theoretic limit on how accurate any reconstruction can be and were comparable with the intrinsic experimental errors in position tracking. In addition, the reconstruction analysis uncovered some interesting aspects of place cell activity, such as the tendency for erratic jumps of the reconstructed trajectory when the animal stopped running. In general, the theoretical values of the minimal achievable reconstruction errors quantify how accurately a physical variable is encoded in the neuronal population in the sense of mean square error, regardless of the method used for reading out the information. One related result is that the theoretical accuracy is independent of the width of the Gaussian tuning function only in two dimensions. Finally, all the reconstruction methods considered in this paper can be implemented by a unified neural network architecture, which the brain feasibly could use to solve related problems.


2010 ◽  
Vol 11 (S1) ◽  
Author(s):  
Noelia Montejo ◽  
Jean-Luc Blanc ◽  
Yann Mahnoun ◽  
Jean-Michel Brezun ◽  
Nicolas Catz ◽  
...  

2021 ◽  
Vol 44 (1) ◽  
Author(s):  
Rainer W. Friedrich ◽  
Adrian A. Wanner

The dense reconstruction of neuronal wiring diagrams from volumetric electron microscopy data has the potential to generate fundamentally new insights into mechanisms of information processing and storage in neuronal circuits. Zebrafish provide unique opportunities for dynamical connectomics approaches that combine reconstructions of wiring diagrams with measurements of neuronal population activity and behavior. Such approaches have the power to reveal higher-order structure in wiring diagrams that cannot be detected by sparse sampling of connectivity and that is essential for neuronal computations. In the brain stem, recurrently connected neuronal modules were identified that can account for slow, low-dimensional dynamics in an integrator circuit. In the spinal cord, connectivity specifies functional differences between premotor interneurons. In the olfactory bulb, tuning-dependent connectivity implements a whitening transformation that is based on the selective suppression of responses to overrepresented stimulus features. These findings illustrate the potential of dynamical connectomics in zebrafish to analyze the circuit mechanisms underlying higher-order neuronal computations. Expected final online publication date for the Annual Review of Neuroscience, Volume 44 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2002 ◽  
Vol 15 (4) ◽  
pp. 744-752 ◽  
Author(s):  
Irina A. Erchova ◽  
Mikhail A. Lebedev ◽  
Mathew E. Diamond

PLoS ONE ◽  
2016 ◽  
Vol 11 (4) ◽  
pp. e0153154 ◽  
Author(s):  
Corey J. Keller ◽  
Christopher Chen ◽  
Fred A. Lado ◽  
Kamran Khodakhah

Sign in / Sign up

Export Citation Format

Share Document