scholarly journals Single‐cell RNA‐Seq characterization of anatomically identified OLM interneurons in different transgenic mouse lines

2019 ◽  
Vol 50 (11) ◽  
pp. 3750-3771 ◽  
Author(s):  
Jochen Winterer ◽  
David Lukacsovich ◽  
Lin Que ◽  
Andrea M. Sartori ◽  
Wenshu Luo ◽  
...  
BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tracy M. Yamawaki ◽  
Daniel R. Lu ◽  
Daniel C. Ellwanger ◽  
Dev Bhatt ◽  
Paolo Manzanillo ◽  
...  

Abstract Background Elucidation of immune populations with single-cell RNA-seq has greatly benefited the field of immunology by deepening the characterization of immune heterogeneity and leading to the discovery of new subtypes. However, single-cell methods inherently suffer from limitations in the recovery of complete transcriptomes due to the prevalence of cellular and transcriptional dropout events. This issue is often compounded by limited sample availability and limited prior knowledge of heterogeneity, which can confound data interpretation. Results Here, we systematically benchmarked seven high-throughput single-cell RNA-seq methods. We prepared 21 libraries under identical conditions of a defined mixture of two human and two murine lymphocyte cell lines, simulating heterogeneity across immune-cell types and cell sizes. We evaluated methods by their cell recovery rate, library efficiency, sensitivity, and ability to recover expression signatures for each cell type. We observed higher mRNA detection sensitivity with the 10x Genomics 5′ v1 and 3′ v3 methods. We demonstrate that these methods have fewer dropout events, which facilitates the identification of differentially-expressed genes and improves the concordance of single-cell profiles to immune bulk RNA-seq signatures. Conclusion Overall, our characterization of immune cell mixtures provides useful metrics, which can guide selection of a high-throughput single-cell RNA-seq method for profiling more complex immune-cell heterogeneity usually found in vivo.


2020 ◽  
Vol 14 ◽  
Author(s):  
Peter A. Groblewski ◽  
Douglas R. Ollerenshaw ◽  
Justin T. Kiggins ◽  
Marina E. Garrett ◽  
Chris Mochizuki ◽  
...  

2000 ◽  
Vol 21 ◽  
pp. 226
Author(s):  
Christine Sturchler-Pierrat ◽  
Dorothee Abramowski ◽  
Christophe Wiessner ◽  
Matthias Staufenbiel ◽  
Karl-Heinz Wiederhold ◽  
...  

2018 ◽  
Author(s):  
Xuran Wang ◽  
Jihwan Park ◽  
Katalin Susztak ◽  
Nancy R. Zhang ◽  
Mingyao Li

AbstractWe present MuSiC, a method that utilizes cell-type specific gene expression from single-cell RNA sequencing (RNA-seq) data to characterize cell type compositions from bulk RNA-seq data in complex tissues. When applied to pancreatic islet and whole kidney expression data in human, mouse, and rats, MuSiC outperformed existing methods, especially for tissues with closely related cell types. MuSiC enables characterization of cellular heterogeneity of complex tissues for identification of disease mechanisms.


Author(s):  
Wenhong Hou ◽  
Li Duan ◽  
Changyuan Huang ◽  
Xingfu Li ◽  
Xiao Xu ◽  
...  

Mesenchymal stem/stromal cells (MSCs) are promising cell sources for regenerative medicine and the treatment of autoimmune disorders. Comparing MSCs from different tissues at the single-cell level is fundamental for optimizing clinical applications. Here we analyzed single-cell RNA-seq data of MSCs from four tissues, namely umbilical cord, bone marrow, synovial tissue, and adipose tissue. We identified three major cell subpopulations, namely osteo-MSCs, chondro-MSCs, and adipo/myo-MSCs, across all MSC samples. MSCs from the umbilical cord exhibited the highest immunosuppression, potentially indicating it is the best immune modulator for autoimmune diseases. MSC subpopulations, with different subtypes and tissue sources, showed pronounced differences in differentiation potentials. After we compared the cell subpopulations and cell status pre-and-post chondrogenesis induction, osteogenesis induction, and adipogenesis induction, respectively, we found MSC subpopulations expanded and differentiated when their subtypes consist with induction directions, while the other subpopulations shrank. We identified the genes and transcription factors underlying each induction at the single-cell level and subpopulation level, providing better targets for improving induction efficiency.


2016 ◽  
Author(s):  
Olivier Poirion ◽  
Xun Zhu ◽  
Travers Ching ◽  
Lana X. Garmire

AbstractDespite its popularity, characterization of subpopulations with transcript abundance is subject to a significant amount of noise. We propose to use effective and expressed nucleotide variations (eeSNVs) from scRNA-seq as alternative features for tumor subpopulation identification. We developed a linear modeling framework, SSrGE, to link eeSNVs associated with gene expression. In all the datasets tested, eeSNVs achieve better accuracies than gene expression for identifying subpopulations. Previously validated cancer-relevant genes are also highly ranked, confirming the significance of the method. Moreover, SSrGE is capable of analyzing coupled DNA-seq and RNA-seq data from the same single cells, demonstrating its value in integrating multi-omics single cell techniques. In summary, SNV features from scRNA-seq data have merits for both subpopulation identification and linkage of genotype-phenotype relationship. The method SSrGE is available at https://github.com/lanagarmire/SSrGE.


2020 ◽  
Author(s):  
Chi-Ming Kevin Li ◽  
Tracy M Yamawaki ◽  
Daniel R Lu ◽  
Daniel C Ellwanger ◽  
Dev Bhatt ◽  
...  

Abstract Background: Elucidation of immune populations with single-cell RNA-seq has greatly benefited the fieldof immunology by deepening the characterization of immune heterogeneity and leading to thediscovery of new subtypes. However, single-cell methods inherently suffer from limitations in therecovery of complete transcriptomes due to the prevalence of cellular and transcriptional dropoutevents. This issue is often compounded by limited sample availability and limited prior knowledge ofheterogeneity, which can confound data interpretation.Results: Here, we systematically benchmarked seven high-throughput single-cell RNA-seq methods. Weprepared 21 libraries under identical conditions of a defined mixture of two human and two murinelymphocyte cell lines, simulating heterogeneity across immune-cell types and cell sizes. We evaluatemethods by their cell recovery rate, library efficiency, sensitivity, and ability to recover expressionsignatures for each cell type. We observed higher mRNA detection sensitivity with the 10x Genomics 5’v1 and 3’ v3 methods. We demonstrate that these methods have fewer drop-out events whichfacilitates the identification of differentially-expressed genes and improves the concordance of singlecellprofiles to immune bulk RNA-seq signatures.Conclusion: Overall, our characterization of immune cell mixtures provides useful metrics, which canguide selection of a high-throughput single-cell RNA-seq method for profiling more complex immunecellheterogeneity usually found in vivo.


2019 ◽  
Author(s):  
Rebekka Wegmann ◽  
Marilisa Neri ◽  
Sven Schuierer ◽  
Bilada Bilican ◽  
Huyen Hartkopf ◽  
...  

AbstractComprehensive benchmarking of computational methods for single-cell RNA sequencing (scRNA-seq) analysis is scarce. Using a modular workflow and a large dataset with known cell composition, we benchmarked feature selection and clustering methodologies for scRNA-seq data. Results highlighted a methodology gap for rare cell population identification for which we developed CellSIUS (Cell Subtype Identification from Upregulated gene Sets). CellSIUS outperformed existing approaches, enabled the identification of rare cell populations and, in contrast to other methods, simultaneously revealed transcriptomic signatures indicative of the rare cells’ function. We exemplified the use of our workflow and CellSIUS for the characterization of a human pluripotent cell 3D spheroid differentiation protocol recapitulating deep-layer corticogenesis in vitro. Results revealed lineage bifurcation between Cajal-Retzius cells and layer V/VI neurons as well as rare cell populations that differ by migratory, metabolic, or cell cycle status, including a choroid plexus neuroepithelial subgroup, revealing previously unrecognized complexity in human stem cell-derived cellular populations.


2018 ◽  
Vol 52 (1) ◽  
pp. 203-221 ◽  
Author(s):  
Kenneth D. Birnbaum

The growing scale and declining cost of single-cell RNA-sequencing (RNA-seq) now permit a repetition of cell sampling that increases the power to detect rare cell states, reconstruct developmental trajectories, and measure phenotype in new terms such as cellular variance. The characterization of anatomy and developmental dynamics has not had an equivalent breakthrough since groundbreaking advances in live fluorescent microscopy. The new resolution obtained by single-cell RNA-seq is a boon to genetics because the novel description of phenotype offers the opportunity to refine gene function and dissect pleiotropy. In addition, the recent pairing of high-throughput genetic perturbation with single-cell RNA-seq has made practical a scale of genetic screening not previously possible.


Sign in / Sign up

Export Citation Format

Share Document