scholarly journals Cross-Tissue Characterization of Heterogeneities of Mesenchymal Stem Cells and Their Differentiation Potentials

Author(s):  
Wenhong Hou ◽  
Li Duan ◽  
Changyuan Huang ◽  
Xingfu Li ◽  
Xiao Xu ◽  
...  

Mesenchymal stem/stromal cells (MSCs) are promising cell sources for regenerative medicine and the treatment of autoimmune disorders. Comparing MSCs from different tissues at the single-cell level is fundamental for optimizing clinical applications. Here we analyzed single-cell RNA-seq data of MSCs from four tissues, namely umbilical cord, bone marrow, synovial tissue, and adipose tissue. We identified three major cell subpopulations, namely osteo-MSCs, chondro-MSCs, and adipo/myo-MSCs, across all MSC samples. MSCs from the umbilical cord exhibited the highest immunosuppression, potentially indicating it is the best immune modulator for autoimmune diseases. MSC subpopulations, with different subtypes and tissue sources, showed pronounced differences in differentiation potentials. After we compared the cell subpopulations and cell status pre-and-post chondrogenesis induction, osteogenesis induction, and adipogenesis induction, respectively, we found MSC subpopulations expanded and differentiated when their subtypes consist with induction directions, while the other subpopulations shrank. We identified the genes and transcription factors underlying each induction at the single-cell level and subpopulation level, providing better targets for improving induction efficiency.

2021 ◽  
Author(s):  
Wenfei Jin ◽  
Wenhong Hou ◽  
Li Duan ◽  
Changyuan Huang ◽  
Xingfu LI ◽  
...  

Mesenchymal stem/stromal cells (MSCs) are promising cell source for regenerative medicine and treatment of autoimmune disorders. Comparing MSCs from different tissues at single cell level is fundamental for optimizing clinical applications. Here we analyzed single cell RNA-seq data of MSCs from 4 tissues, namely umbilical cord, bone marrow, synovial tissue and adipose tissue. We identified 3 major cell subpopulations, namely osteo-MSCs, chondro-MSCs, adipo/myo-MSCs, across all MSC samples. MSCs from umbilical cord exhibited the highest immunosuppression, potentially indicating it is the best immune modulator for autoimmune diseases. The differentiation potentials of MSC subpopulations, which are strongly associated with their subtypes and tissue sources, showed pronounced subpopulation differences. We found MSC subpopulations expanded and differentiated when their subtypes consist with induction directions, while the other subpopulations shrank. We identified the genes and transcription factors underlying each induction at single cell level and subpopulation level, providing better targets for improving induction efficiency.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Likhitha Kolla ◽  
Michael C. Kelly ◽  
Zoe F. Mann ◽  
Alejandro Anaya-Rocha ◽  
Kathryn Ellis ◽  
...  

2021 ◽  
Author(s):  
Sheng Zhu ◽  
Qiwei Lian ◽  
Wenbin Ye ◽  
Wei Qin ◽  
Zhe Wu ◽  
...  

Abstract Alternative polyadenylation (APA) is a widespread regulatory mechanism of transcript diversification in eukaryotes, which is increasingly recognized as an important layer for eukaryotic gene expression. Recent studies based on single-cell RNA-seq (scRNA-seq) have revealed cell-to-cell heterogeneity in APA usage and APA dynamics across different cell types in various tissues, biological processes and diseases. However, currently available APA databases were all collected from bulk 3′-seq and/or RNA-seq data, and no existing database has provided APA information at single-cell resolution. Here, we present a user-friendly database called scAPAdb (http://www.bmibig.cn/scAPAdb), which provides a comprehensive and manually curated atlas of poly(A) sites, APA events and poly(A) signals at the single-cell level. Currently, scAPAdb collects APA information from > 360 scRNA-seq experiments, covering six species including human, mouse and several other plant species. scAPAdb also provides batch download of data, and users can query the database through a variety of keywords such as gene identifier, gene function and accession number. scAPAdb would be a valuable and extendable resource for the study of cell-to-cell heterogeneity in APA isoform usages and APA-mediated gene regulation at the single-cell level under diverse cell types, tissues and species.


2020 ◽  
Author(s):  
Léonard Hérault ◽  
Mathilde Poplineau ◽  
Adrien Mazuel ◽  
Nadine Platet ◽  
Élisabeth Remy ◽  
...  

ABSTRACTHematopoietic stem cells (HSCs) are the guarantor of the proper functioning of hematopoiesis due to their incredible diversity of potential. During aging the heterogeneity of mouse HSCs evolves, which contributes to the deterioration of the immune system. Here we address the transcriptional plasticity of HSC upon aging at the single-cell resolution. Through the analysis of 15,000 young and aged transcriptomes, we reveal 15 clusters of HSCs unveiling rare and specific HSC abilities that change with age. Pseudotime ordering complemented with regulon analysis showed that the consecutive differentiation states of HSC are delayed upon aging. By analysing cell cycle at the single cell level we highlight an imbalance of cell cycle regulators of very immature aged HSC that may contribute to their accumulation in an undifferentiated state.Our results therefore establish a reference map of young and old mouse HSC differentiation and reveal a potential mechanism that delay aged HSC differentiation.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Dominik Pförringer ◽  
Matthias M. Aitzetmüller ◽  
Elizabeth A. Brett ◽  
Khosrow S. Houschyar ◽  
Richard Schäfer ◽  
...  

Introduction. Adipose-derived stromal cells (ASCs) are a promising resource for wound healing and tissue regeneration because of their multipotent properties and cytokine secretion. ASCs are typically isolated from the subcutaneous fat compartment, but can also be obtained from visceral adipose tissue. The data on their equivalence diverges. The present study analyzes the cell-specific gene expression profiles and functional differences of ASCs derived from the subcutaneous (S-ASCs) and the visceral (V-ASCs) compartment. Material and Methods. Subcutaneous and visceral ASCs were obtained from mouse inguinal fat and omentum. The transcriptional profiles of the ASCs were compared on single-cell level. S-ASCs and V-ASCs were then compared in a murine wound healing model to evaluate their regenerative functionality. Results. On a single-cell level, S-ASCs and V-ASCs displayed distinct transcriptional profiles. Specifically, significant differences were detected in genes associated with neoangiogenesis and tissue remodeling (for example, Ccl2, Hif1α, Fgf7, and Igf). In addition, a different subpopulation ecology could be identified employing a cluster model. Nevertheless, both S-ASCs and V-ASCs induced accelerated healing rates and neoangiogenesis in a mouse wound healing model. Conclusion. With similar therapeutic potential in vivo, the significantly different gene expression patterns of ASCs from the subcutaneous and visceral compartments suggest different signaling pathways underlying their efficacy. This study clearly demonstrates that review of transcriptional results in vivo is advisable to confirm the tentative effect of cell therapies.


2021 ◽  
Author(s):  
Wilson McKerrow ◽  
Shane A. Evans ◽  
Azucena Rocha ◽  
John Sedivy ◽  
Nicola Neretti ◽  
...  

AbstractLINE-1 retrotransposons are known to be expressed in early development, in tumors and in the germline. Less is known about LINE-1 expression at the single cell level, especially outside the context of cancer. Because LINE-1 elements are present at a high copy number, many transcripts that are not driven by the LINE-1 promoter nevertheless terminate at the LINE-1 3’ UTR. Thus, 3’ targeted single cell RNA-seq datasets are not appropriate for studying LINE-1. However, 5’ targeted single cell datasets provide an opportunity to analyze LINE-1 expression at the single cell level. Most LINE-1 copies are 5’ truncated, and a transcript that contains the LINE-1 5’ UTR as its 5’ end is likely to have been transcribed from its promoter. We developed a method, L1-sc (LINE-1 expression for single cells), to quantify LINE-1 expression in 5’ targeted 10x genomics single cell RNA-seq datasets. Our method confirms that LINE-1 expression is high in cancer cells, but low or absent from immune cells. We also find that LINE-1 expression is elevated in epithelial compared to immune cells outside of the context of cancer and that it is also elevated in neurons compared to glia in the mouse hippocampus.


Sign in / Sign up

Export Citation Format

Share Document